Answer:

Explanation:
It says “Momentum before the collision is equal to momentum after the collision.” Elastic Collision formula is applied to calculate the mass or velocity of the elastic bodies.












Answer:
calm down please its not that serious maybe no one saw it yet
Explanation:
The electric force between two charged particles can be increased by decreasing the distance between the two particles.
<h3>How to increase electric force between two charged particles.</h3>
The technique of decreasing the separation distance between objects increases the force of attraction or repulsion between the objects. while
increasing the separation distance between objects decreases the force of attraction or repulsion between the objects.
Read more on Electric Force:
brainly.com/question/17692887
#SPJ1
Answer:
1 cm⁻¹ =1.44K 1 ev = 1.16 10⁴ K
Explanation:
The relationship between temperature and thermal energy is
E = K T
The relationship of the speed of light
c =λ f = f / ν 1/λ= ν
The Planck equation is
E = h f
Let's start the transformations
c = f λ = f / ν
f = c ν
E = h f
E = h c ν
E = KT
h c ν = K T
T = h c ν / K =( h c / K) ν
Let's replace the constants
h = 6.63 10⁻³⁴ J s
c = 3 10⁸ m / s
K = 1.38 10⁻²³ J / K
v = 1 cm-1 (100 cm / 1 m) = 10² m-1
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 1 10²
A = h c / K = 1,441 10⁻²
T = 1.44K
ν = 103 cm⁻¹ = 103 10² m
T = (6.63 10⁻³⁴ 3. 10⁸ / 1.38 10⁻²³) 103 10²
T = 148K
1 Rydberg = 1.097 10 7 m
As we saw at the beginning the λ=1 / v
T = (h c / K) 1 /λ
T = 1,441 10⁻² 1 / 1,097 10⁷
T = 1.3 10⁻⁹ K
E = 1Ev (1.6 10⁻¹⁹ J /1 eV) = 1.6 10⁻¹⁹ J
E = KT
T = E/K
T = 1.6 10⁻¹⁹ /1.38 10⁻²³
T = 1.16 10⁴ K
Answer: a) vcar= 7 m/s ; b) a train= 0.65 m/s^2
Explanation: By using the kinematic equation for the car and the train we can determine the above values of the car velocity and the acceletarion of the train, respectively.
We have for the car
distance = v car* t, considering the length of train (81.1 m) travel by the car during the first 11.6 s
the v car = distance/time= 81.1 m/11.6s= 7 m/s
In order to calculate the acceleration we have to use the kinematic equation for the train from the rest
distance train = (a* t^2)/2
distance train : distance travel by the car at constant speed
so distance train= (vcar*36.35)m=421 m
the a traiin= (2* 421 m)/(36s)^2=0.65 m/s^2