The velocity of the ball is 12.5 m/s
Explanation:
The velocity of the ball is given by the ratio between the distance covered by the ball and the time taken:

First, we calculate the distance covered. We know that the radius of the circle is
r = 0.450 m
And the length of the circumference is

The ball makes 25.0 revolutions, so a total distance of

In a time of
t = 9.37 s
So, its velocity is

Learn more about velocity here:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
he would have to run at a 7 and a half mile to get 8 miles in an hour
Explanation:
Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.

where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
![W = (80*10)*3\\W = 2400 [J]](https://tex.z-dn.net/?f=W%20%3D%20%2880%2A10%29%2A3%5C%5CW%20%3D%202400%20%5BJ%5D)
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.

where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
![P = 2400/40\\P = 60 [W]](https://tex.z-dn.net/?f=P%20%3D%202400%2F40%5C%5CP%20%3D%2060%20%5BW%5D)
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
![Effic=0.7\\Effic=P_{required}/P_{introduced}\\P_{introduced}=60/0.7\\P_{introduced}=85.71[W]](https://tex.z-dn.net/?f=Effic%3D0.7%5C%5CEffic%3DP_%7Brequired%7D%2FP_%7Bintroduced%7D%5C%5CP_%7Bintroduced%7D%3D60%2F0.7%5C%5CP_%7Bintroduced%7D%3D85.71%5BW%5D)
Sorry I'm so late, but I just took this test and the answer is white (for people who didn't study well ;) )
Answer:
Increases, increases
Explanation:
The current is directly proportional to the voltage and inversely proportional to the resistance. The implication of this is that, whenever the voltage is increased, the current increases simultaneously. On the other hand, if the resistance is increased, the current will decrease accordingly and vice versa.
Recall that power is given by P= V^2/R where;
P= power, V= voltage and R= resistance
We can see that power and resistance are inversely related hence decreasing the resistance increases the power output of the lightbulb.