Lindsay has to fly this plane towards this direction [W 12.5° S] to get to Hamilton.
From this question, the plane is still up in the air.
We have wind blowing in [W 60° N ]
To solve the problem we have to make use of the sine rule

We put the values in the equation, we have:
50/Sinθ = 200/sin60°
The next step is to cross multiply
50 x sin60° = 200Sinθ
50 x 0.8660 = 200sinθ
We make Sin θ the subject
Sine θ = 43.30/200
sine θ = 0.2165
we find the value of θ
θ = sine⁻¹(0.2165)
θ = 12.50
So Lindsay has to fly this plane towards this direction
[W 12.5° S]
Here is a similar question brainly.com/question/13338067?referrer=searchResults
Answer:
human body is answer according to our studies
Answer:
8.57 Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
The velocity, wavelength and frequency of a wave are related according to the equation:
Velocity = wavelength × frequency
v = λ × f
With the above formula, we can simply obtain the frequency of the wave as follow:
Wavelength (λ) = 3.5 m
Velocity (v) = 30 m/s
Frequency (f) =?
v = λ × f
30 = 3.5 × f
Divide both side by 3.5
f = 30 / 3.5
f = 8.57 Hz
Thus, the frequency of the wave is 8.57 Hz
we only see wavelengths from 400–700 nanometers.