Answer:
Neutrons and protons
Explanation:
There are three fundamental subatomic particles, these are;neutrons protons and electrons.
Ernest Rutherford successfully showed that every atom does possess a central core that contain positively charged particles (protons) called the nucleus. Chadwick later discovered the existence of neutrons.
Both protons and neutrons are found in the nucleus. Z represents the nucleus of the boron atom and houses the neutrons and protons of the boron atom.
The variable that stays constant is the number of molecules.
B. a sugar crystal
Because sugar comes from plants, it is classified as an organic compound, not a mineral.
NH3 is neutralised by the equation:
HCL + NH3 -> NH4CL
In this equation there is a one to one relationship in terms of the number of moles of each reactant. I.e. To neutralise 1 mole of NH3 we require 1 mole of HCL.
To calculate the concentration of NH3 required, we must first calculate the number of moles of HCL used.
volume HCL = 35.5mL = 0.0355 litres
concentration HCL = 0.23M = 0.23 mole/litre
Note that the term "M" for concentration simply means moles/litre
number moles = concentration x volume
number moles HCL = 0.0355 x 0.23 = 0.008165 moles HCL
based on the equation, we know the number of moles of NH3 must be the same
So,
moles NH3, n = 0.008165
volume NH3, v = 20.0mL = 0.020 litres
n = c x v
c = n / v
c = 0.008165 / 0.020
=0.41
i.e. the concentration of NH3 would be 0.41 moles/litre or 0.41M
This intuitively makes sense because there is less volume of NH3 required to be neturalised, in a one-to-one mole relationship. So the concentration of NH3 would need to be higher than that of HCL.
Dissolution means to make the compound apart, So when we have ionic compounds like NaI which has metal and non-metal ions, It separates into parts of positive ions and negative ions. After we separate this compound apart we will put the charge of each on above its symbol and then start to balance the equation of the dissolution.
So the dissolution equation of NaI is:
NaI(s) → Na^+(s) + I^-(Aqu)