Answer:
W = 47040 J
Explanation:
Given that,
The mass of a student, m = 60 kg
Height of the tower, h = 80 m
We need to find the work done in climbing the tower. The work done is given by :
W = mgh
So,
W = 60 × 9.8 × 80
W = 47040 J
So, the required work done is 47040 J.
Answer:
3.42N
Explanation:
*not too sure bc i left my physics notes at school so it might not be 100% accurate :p*
Use the equation: F = (GMm)/(r^2)
F = force of gravity
G = gravitational constant (6.7x10^-11)
M = mass1 (2.5x10^30kg)
m = mass2 (1kg)
r = radius (7000m)
Plug it in: F = ((6.7x10^-11)(2.5x10^30)(1)) / (7000^2)
F = (1.675x10^20) / (4.9x10^7)
F = 3.4183673x10^12
F = 3.42N
I think its Coulomb's law<span>
</span>
Electrons move from the atoms in the cloth to the atoms in the balloon, causing the balloon to have a negative charge
Hope this helps!!!
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W