Answer:
6.3 m/s
Explanation:
m = mass of the block = 1.10 kg
k = spring constant of the spring
x = stretch in the spring = 0.2 m
t = time taken by block to come to zero speed first time = 0.100 s
T = Time period of oscillation
Time period of oscillation is given as
T = 2t
T = 2 (0.1)
T = 0.2 s
Time period is also given as


k = 1084.6 N/m
v = maximum speed of the block
using conservation of energy
Maximum kinetic energy = Maximum spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(1.10) v² = (1084.6) (0.2)²
v = 6.3 m/s
Data:
m (mass) = 1 Kg
s (speed) = 3 m/s
Kinetic energy = ? (Joule)
Formula (Kinetic energy)

Solving:




A hypothesis is a proposed explanation made on the basis of limited information while a theory is a series of ideas intended to explain something.
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
Answer:
Electrolytes are salts or molecules that ionize completely in solution. As a result, electrolyte solutions readily conduct electricity. Nonelectrolytes do not dissociate into ions in solution; nonelectrolyte solutions do not, therefore, conduct electricity
Explanation: