Answer:
2) 433 mph
Explanation:
The final velocity of the raindrop as it reaches the ground can be found by using the equation for a uniformly accelerated motion:

where
v is the final velocity
u = 0 is the initial velocity (the raindrop starts from rest)
a = g = 9.8 m/s^2 is the acceleration due to gravity
d = 2 km = 2000 m is the distance covered
Solving for v,

And keeping in mind that
1 mile = 1609 metres
1 hour = 3600 s
The speed converted into miles per hour is

Answer:
Latitude :
runs: east to west
measures : distances north and south of the equator
Longitude :
runs : north to south
measures : the distance east or west of the Prime Meridian
A is not linked. Coal burning is not an effect of acid rain.
~Deceptiøn
Answer:
fine the area then devide force by area
Explanation:
10000/(0.5*4)= 5000 pa
Here is the full question:
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.
Answer:
a) 0.85 m
b) 0.98 m
c) 0.76 m
Explanation:
Given that: the radius of gyration
So, moment of rotational inertia (I) of a cylinder about it axis = 





k = 0.8455 m
k ≅ 0.85 m
For the spherical shell of radius
(I) = 




k = 0.9797 m
k ≅ 0.98 m
For the solid sphere of radius
(I) = 




k = 0.7560
k ≅ 0.76 m