Answer:
I think it's C!
Explanation:
Sound waves travel at 343 m/s through the air and faster through liquids and solids. The waves transfer energy from the source of the sound, e.g. a drum, to its surroundings. Your ear detects sound waves when vibrating air particles cause your eardrum to vibrate. The bigger the vibrations the louder the sound.
Hope this helps!
Impulse = Force * time
Impulse = 500N *0.5 s =250 N*s
Answer:
Tidal heating
Explanation:
Tidal force is the ability of a massive body to produce tides on another body. The tidal force depends on the mass of the body that produces the tides and the distance between the two bodies.
Tidal forces can cause the destruction of a satellite that orbits a planet or a comet that is too close to the Sun or a planet. When the orbiting body crosses the "Roche boundary", the tidal forces along the body are more intense than the cohesion forces that hold the body together.
Tidal friction is the force between the Earth's oceans and ocean floors caused by the gravitational attraction of the Moon. The Earth tries to transport the waters of the oceans with it, while the Moon tries to keep them under it and on the opposite side of the Earth. In the long term, tidal friction causes the Earth's rotation speed to decrease, thus shortening the day. In turn, the Moon increases its angular momentum and gradually spirals away from Earth. Finally, when the day equals the orbital period of the Moon (which will be about 40 times the length of the current day), the process will cease. Subsequently, a new process will begin when the power to raise tides from the Sun takes angular momentum from the Earth-Moon system. The Moon will then spiral towards Earth until it is destroyed when it enters the "Roche boundary."
<u>Tidal heating
</u>
It is the warming caused by the tidal action on a planet or satellite. The most important example of tidal heating in the Solar System is the effect of Jupiter on its Io satellite, in which the tidal effects produce such high temperatures that the interior of the satellite melts, producing volcanism.
Answer:
$893
Explanation: the complete question should be
The clothes washer in your house consumes 470 kWh of energy per year. Price of the washer is $360 and the lifetime of the washer is 10 yrs. Energy price in your city is 9 cents per kWh. What is the lifecycle cost of the clothes washer? (assume a maintenance cost of $11 per year)
SOLUTION
Given:
The clothes washe power consumption (PC) is 470 kWh
Price of the washer (P) is $360
lifetime of the washer (L) is 10 yrs
Energy price in the city (E) is 9 cents per kWh (Covert to $ by dividing 100)
maintenance cost (M) is $11 per year
Lifecycle cost = P + (PC × L × E) +M + L
Lifecycle cost = $360 + (470kWh × 10years × 9cents/100) + ($11 × 10years)
=$893
The pressure increase at the bottom of the pool after they enter the pool and float is 106.103 Pa.
<h3>What is absolute pressure?</h3>
Absolute pressure is the force that exists in a space when there is no matter present, or when there is a perfect vacuum. This absolute zero serves as the baseline for measurements in absolute pressure. The measurement of barometric pressure is the greatest illustration of an absolute referenced pressure. In order to determine absolute pressure, a complete vacuum is used. In contrast, gauge pressure is the amount of pressure that is measured in relation to atmospheric pressure, also referred to as barometric pressure.
given,
diameter = 6 m
depth = h = 1.5 m
Atmospheric pressure = P₀ = 10⁵ Pa
a) absolute pressure
P = P₀ + ρ g h
P = 10⁵ + 1000 x 10 x 1.5
P = 1.15 x 10⁵ Pa
b) When two person enters into the pool,
mass of the two person = 150 Kg
weight of water level displaced exists equal to the weight of person.




Area of pool 


Height of the water rise



P = ρ g h
P = 1000 x 10 x 0.0106
P = 106.103 Pa
To learn more about absolute pressure refer to:
brainly.com/question/17200230
#SPJ4