Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

Answer: Current = 2 A
Explanation:
Given that an electrical power plant generates electricity with a
current I = 50 A
Potential difference V = 20 000 V
The resistance R will be achieved by Ohms law formula which state that
V = IR
But the power generated will be the product of potential difference and the current
Power P = IV
P = 50 × 20000
P = 1, 000000 W
When the transformer steps up the potential difference to 500 000 V before it is transmitted
Power is always constant.
Using the formula for power again with
V = 500000
1000000 = 500000× I
Make I the subject of formula
Current I = 1000000/500000
Current I = 2 A
Answer: Load divided by it effort
Explanation:
Mechanical advantage of any machine is its load divided by its effort
Answer:
anywhere between 100000 to about 400000 human years .
Explanation: