Answer:
3 sigma lower control limit = 0.0429
Explanation:
Given.
n = 100
days = 100
Number of defective bulbs = 600 defective bulbs
Let p = Process Average
p = 600/(100*40)
P = 600/4000
P = 0.15
q = 1 - p
q = 1 - 0.15
q = 0.85
3 sigma lower limit = p - 3*√(pq/n)
Using the above formula
Substitute in the values
3 sigma lower control limit = 0.15 - 3 * √(0.15 * 0.85/100)
3 sigma lower control limit= 0.15 - 3√0.001275
3 sigma lower control limit = 0.15 - 3* 0.035707142142714
3 sigma lower control limit = 0.15 - 0.107121426428142
3 sigma lower control limit = 0.04287857357185
3 sigma lower control limit = 0.0429 ---- approximated
Answer:
Frequency
Explanation:
Each half wavelength has a point of largest amplitude (aka a node). Depending on the wavelength each node oscillates at a certain rate of swings per unit of time. The latter is referred to as frequency and measure in Hertz [Hz].
Answer:
Explanation:
The fish falls from vertical rest in a time of
t = √(2h/g) = √(2(2.27)/9.81) = 0.68 s
v = d/t = 5.6 / 0.68 = 8.2 m/s
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129
Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.