Answer:
A) 8.00 mol NH₃
B) 137 g NH₃
C) 2.30 g H₂
D) 1.53 x 10²⁰ molecules NH₃
Explanation:
Let us consider the balanced equation:
N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)
Part A
3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:

Part B:
1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:

Part C:
According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:

Part D:
6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂:

Answer:
4.20 moles NF₃
Explanation:
To convert between moles of N₂ and NF₃, you need to use the mole-to-mole ratio from the balanced equation. This ratio consists of the coefficients of both molecules from the balanced equation. The molecule you are converting from (N₂) should be in the denominator of the ratio because this allows for the cancellation of units. The final answer should have 3 sig figs because the given value (2.10 moles) has 3 sig figs.
1 N₂ + 3 F₂ ---> 2 NF₃
2.10 moles N₂ 2 moles NF₃
--------------------- x --------------------- = 4.20 moles NF₃
1 mole N₂
Based on the calculations, the approximate ductility (%el) of this brass is equal to 2.3%.
<u>Given the following data:</u>
- Yield strength = 230 mpa (33360 psi).
<h3>What is ductility?</h3>
Ductility can be defined as an important property of a material which determines its ability to become elongated due to the application of stress.
Mathematically, the ductility of a material can be expressed as percentage elongation in length:

<u>Where:</u>
is the original length.
is the final length.
is the yield strength.
For this exercise, let us assume the original length of this brass is equal to 100 meters.
Substituting the parameters into the formula, we have;

Ductility = 2.3%.
Read more on ductility here: brainly.com/question/828860
Answer:
C.) perpendicular
Explanation:
A particle with an electric charge experiences the maximum deflecting force when it is positioned perpendicular to the magnetic field.
Covalent substances have weaker intermolecular attractions.