Answer:
The temperature change from the combustion of the glucose is 6.097°C.
Explanation:
Benzoic acid;
Enthaply of combustion of benzoic acid = 3,228 kJ/mol
Mass of benzoic acid = 0.570 g
Moles of benzoic acid = 
Energy released by 0.004667 moles of benzoic acid on combustion:

Heat capacity of the calorimeter = C
Change in temperature of the calorimeter = ΔT = 2.053°C



Glucose:
Enthaply of combustion of glucose= 2,780 kJ/mol.
Mass of glucose=2.900 g
Moles of glucose = 
Energy released by the 0.016097 moles of calorimeter combustion:

Heat capacity of the calorimeter = C (calculated above)
Change in temperature of the calorimeter on combustion of glucose = ΔT'



The temperature change from the combustion of the glucose is 6.097°C.
Four people weigh a standard mass of 10.00 g on the same balance. The set of readings suggest measurements that are neither precise <span>nor accurate is the one with less mass</span>
Answer:
1.0 L
Explanation:
Given that:-
Mass of
= 
Molar mass of
= 64.099 g/mol
The formula for the calculation of moles is shown below:

Thus,


According to the given reaction:-

1 mole of
on reaction forms 1 mole of 
0.0396 mole of
on reaction forms 0.0396 mole of 
Moles of
= 0.0396 moles
Considering ideal gas equation as:-

where,
P = pressure of the gas = 742 mmHg
V = Volume of the gas = ?
T = Temperature of the gas = ![26^oC=[26+273]K=299K](https://tex.z-dn.net/?f=26%5EoC%3D%5B26%2B273%5DK%3D299K)
R = Gas constant = 
n = number of moles = 0.0396 moles
Putting values in above equation, we get:

<u>1.0 L of acetylene can be produced from 2.54 g
.</u>
Answer:
no. of water molecules associated to each molecule of
= 4
Explanation:
Mass of
before heating = 19.8 g
Mass of
after heating = 12.6 g
Difference in mass of
before and after heating
= 19.8 - 12.6 = 7.2 g
Difference in mass corresponds to mass of water driven out.
Molar mass of water = 18 g/mol
No. of moles of water = 
Mass of
obtained after heating is mass of anhydrous
.
Mass of anhydrous
= 12.6 g
Molar mass of
= 125.9 g/mol
No. of mol of anhydrous
= 
so,
0.1 mol of
have 0.4 mol of water
1 mol of
will have = 
Hence, no. of water molecules associated to each molecule of
= 4
The elements toward the bottom left corner of the periodic table are the metals that are the most active in the sense of being the most reactive. Lithium, sodium, and potassium all react with water, for example.