The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au
Answer:
b. Conducts electricity when dissolved in water
Explanation:
Iron(II) chloride, is the chemical compound with formula FeCl2.
It is a solid with a high melting point of about 677 degree Celsius or 950 K when in anhydrous form but have lower melting point in hydrated form.
The compound is often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in the laboratory.
There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.
Answer:
C
Explanation:
Angiosperms have developed these adaptations because it attracts pollinators which helps the ecosystem grow.
Answer:
Fault-block mountain
In geography, fault-block mountains arise when the Earth's crust pulls apart and divides. Some parts of the Earth are pushed upwards whereas the other moves downward forming a divergent boundary. In geological studies, a divergent boundary can be described as a linear feature which arises due to plate tectonics which are being pulled apart from each other. Hence, fault-block mountains are most likely to be seen in a divergent boundary.
Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands, which occur when the plates move apart to produce gaps that molten lava rises to fill.
Answer:
amount of silver chloride required is 0.015 moles or 2.1504 g
Explanation:
0.1M AgCL means 0.1mol/dm³ or 0.1mol/L
1L = 1000mL
if 0.1mol of AgCl is contained in 1000mL of solution
then x will be contained in 150mL of solution
cross multiply to find x
x = (0.1*150)/1000
x= 0.015 moles
moles of silver chloride present in 150 mL of solution is 0.15 moles
To convert this to grams, simply multiply this value by the molar mass of silver chloride
molar mass of silver chloride AgCl =107.86 + 35.5
=143.36 g/mol
mass of AgCl = moles *molar mass
=0.015*143.36
=2.1504g
=