The student who displaced the spring by 2 cm has less potential energy than the student who displaced the spring by 4 cm, this is because potential energy (elastic) is directly proportionate to extension (displaced amount), so as the amount of displacement of the spring is higher, then the potential energy of the springs is higher and vice versa.
Answer
Mass m = 78 kg
Vertical height in each stage h = 11 m
(a).
Initial speed u = 0
Final speed v = 1.1 m / s


a = 0.055 m/s²
Work done




(b).Work done

W_b = 78× 9.8× 11

c)
Work done

Where V = final speed
= 0
v = 1.1 m / s
for deceleration a = -0.055 m/s²
now,

W_c = 545.75 × 11

The specific heat of mercury is 149.4 J/(kgK)
Explanation:
When a substance is supplied with an amount of energy Q, its temperature increases according to the equation:

where
is the increase in temperature
m is the mass of the sample
is its specific heat capacity
For the sample of mercury in this problem we have
Q = 275 J
m = 0.450 kg

Therefore, by re-arranging the equation we find the mercury's specific heat:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Explanation:
Archimedes' principle states that the upward buoyant force which is exerted on body when immersed whether fully submerged or partially in the fluid is equal to weight of fluid which body displaces and this force acts in upward direction at center of mass of displaced fluid.
Thus,
<u>Weight of the displaced fluid = Weight of the object - Weight of object in fluid.</u>
Output can not be greater than input because the conversion of energy can not be greater than 100%.