I found the answer sheet online for you
Answer:
Maximum acceleration will be 
Explanation:
We have given mass of the object m = 2 kg
Spring constant k = 55.6 N/m
Amplitude is given as A = 0.045 m
We know that maximum acceleration in SHM is given by
Maximum acceleration 
We know that 
So maximum acceleration =
Chalres law and absolute zero . in 1780s, by experiments
To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
impulse = F × t
The greater the impulse exerted on something, the greater will be the change in momentum.
impulse = change in momentum
Ft = ∆(mv)