Given that the rope is not moving (acceleration is zero), by the second Law of Newton (F=m*a), the net force acting on the rope is zero.
Then, the force applied by the team B equals the force applied by the tema A: 103 N.
Answer:
has units of distance
has units of distance over time
has units of distance over 
has units of distance over 
Explanation:
Since the expression for the distance is:

then:
has units of distance
has units of distance over time
has units of distance over 
has units of distance over 
because we are supposed to be able to add all of the terms and get a distance. So the products on each term that contains factors of time (t) should be cancelling those time units with units in the denominator of the multiplicative constant s that accompany them.
Answer:
a) The angular acceleration of the beam is 0.5 rad/s²CW (direction clockwise due the tangential acceleration is positive)
b) The acceleration of point A is 3.25 m/s²
The acceleration of point E is 0.75 m/s²
Explanation:
a) The relative acceleration of B with respect to D is equal:

Where
aB = absolute acceleration of point B = 2.5 j (m/s²)
aD = absolute acceleration of point D = 1.5 j (m/s²)
(aB/D)n = relative acceleration of point B respect to D (normal direction BD) = 0, no angular velocity of the beam
(aB/D)t = relative acceleration of point B respect to D (tangential direction BD)


We have that
(aB/D)t = BDα
Where α = acceleration of the beam
BDα = 1 m/s²
Where
BD = 2

b) The acceleration of point A is:

(aA/D)t = ADαj

The acceleration of point E is:
(aE/D)t = -EDαj
