Recall that average velocity is equal to change in position over a given time interval,

so that the <em>x</em>-component of
is

and its <em>y</em>-component is

Solve for
and
, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.


Note that I'm reading the given details as

so if any of these are incorrect, you should make the appropriate adjustments to the work above.
The statement “Impulse is a vector quantity” is true about Impulse.
Answer: Option B
<u>Explanation:
</u>
The object’s action by applied force in a particular time interval, there happens changing in momentum called impulse. It is denoted by a symbol ‘J’ or ‘imp’ and expressed in a unit ‘Ns’. As impulse depends on the acted force, when a collision arises from front, behind or side, the force’s direction would be differed.

So, from this option A is false as impulse is not a force but changing momentum. The unit is not Newton, it is Newton second (Ns). The force direction differs (impulse direction) for each cases of collision, so option D also false. Hence, option B seems to be correct. Vector quantity deals with both direction and magnitude and important in motion study.
If you know an element’s atomic number, you will learn the number of protons and electrons. The atomic number is equal to the number or protons and electrons. You can also find the number of neutrons, by subtracting the atomic mass from the atomic number.
For example, Fluorine’s atomic number is 9, and its atomic mass is 19. So, the number of electrons and protons in fluorine is 9. The number of neutrons the is equal to 19-9. Thus, Fluorine has 10 neutrons.
Hope this helps :)
If you compare the energy at two different times in an equation, you'll see no difference, because it's been conserved. The total energy of a system is the sum of its energy in motion - its kinetic energy - and its energy due to its position, which is its potential energy