Answer:It is false
Explanation:
I took a quiz with this question in it and I chose true but I got it wrong
One of the many awe-inspiring things about algae, Professor Greene explains, is that they can grow between ten and 100 times faster than land plants. In view of this speedy growth rate – combined with the fact they can thrive virtually anywhere in the right conditions – growing marine microalgae could provide a variety of solutions to some of the world’s most pressing problems.
Take, global warming. Algae sequesters CO2, as we have learned, but owing to the fact they grow faster than land plants, can cover wider areas and can be utilised in bioreactors, they can actually absorb CO2 more effectively than land plants. AI company Hypergiant Industries, for instance, say their algae bioreactor was 400 times more efficient at taking in CO2 than trees.
And it’s not just their nutritional credentials which could solve humanity’s looming food crisis, but how they are produced. Marine microalgae grow in seawater, which means they do not rely on arable land or freshwater, both of which are in limited supply. Professor Greene believes the use of these organisms could therefore release almost three million km2 of cropland for reforestation, and also conserve one fifth of global freshwater
Answer:
The final volume of the sample of gas
= 0.000151 
Explanation:
Initial volume
= 200 ml = 0.0002
Initial temperature
= 296 K
Initial pressure
= 101.3 K pa
Final temperature
= 336 K
Final pressure
= K pa
Relation between P , V & T is given by

Put all the values in the above equation we get

= 0.000151 
This is the final volume of the sample of gas.
Answer:
0.375 moles of CaCO₃ are required
Explanation:
Given data:
Number of moles of sulfamic acid = 0.75 mol
Number of moles of calcium carbonate required = ?
Solution:
Chemical equation:
2H₃NSO₃ + CaCO₃ → Ca(SO₃NH₂)₂ + CO₂ + H₂O
Now we will compare the moles of H₃NSO₃ and CaCO₃ .
H₃NSO₃ : CaCO₃
2 : 1
0.75 : 1/2×0.75 = 0.375 mol
Thus, 0.375 moles of CaCO₃ are required.
<em>Inflammation</em> can have causes that aren't due to underlying disease. Examples include injuries such as sprains and strains, overuse, or insect bites.