<h2>
Answer:</h2>
<em>1.33 x 10⁻ ⁴ T outwards.</em>
<em></em>
<h2>
Explanation:</h2>
The equation for the magnetic force (F) on a wire whose length is L and carrying a current I in a magnetic field (B) that is uniform is given by;
F = ILB sin θ ---------------------(i)
Where;
θ = angle between the direction of the current and that of the magnetic field.
From the question,
F = 4.0 × 10⁻² N
I = 12A
L = 25m
θ = 90°
<em>Substitute these values into equation(i) and solve as follows;</em>
4.0 × 10⁻² = 12 x 25 x B x sin 90°
4.0 × 10⁻² = 300 x B x 1
4.0 × 10⁻² = 300B
0.04 = 300B
B = 
B = 0.000133
B = 1.33 x 10⁻ ⁴ T
To get the direction of the magnetic field, the right-hand rule is used.
If the right hand fingers are positioned in the correct order specified by the right hand rule, then it would be seen that the magnetic field is directed outwards.
Therefore, the magnitude and direction of the magnetic field at this location is <em>1.33 x 10⁻ ⁴ T outwards.</em>
Hey can you please help me?
Answer:
The way in which objects exert forces on each other is described by Newton’s 3rd law of motion
Explanation:
Objects with mass exert forces on each other via the force of gravity. This force is proportional to the mass of the two interacting objects and is inversely proportional to the square of the distance between them. The factors G, M, and rare the same for all masses at the surface of the Earth.
Answer:
Explanation:
For image formation in objective lens
object distance u = 14 +1 = 15 mm
focal length f = 14 mm .
image distance v = ?
lens formula

Putting the values

v = 210 mm .
B )
magnification = v / u
= 210 / 15
= 14
size of image = 14 x 1.1 mm
= 15.4 mm
= 15 mm approx
C )
For final image to be at infinity , image produced by objective lens must fall at the focal point of eye piece . so objective lens's distance from the image formed by objective must be equal to focal length of eye piece that is 21 mm .
21 mm is the answer .
D )
overall magnification =

D = 25 cm , f_e = focal length of eye piece
= 14 x 250 / 21
= 166.67
= 170 ( in two significant figures )