Answer:
statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.
Explanation:
The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.
The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction
here, the downward direction signifies the downward motion parallel to the inclined plane.
Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.
Hence, for the block to stop sliding the the above statement should be true.
Answer:
The Nucleus
Explanation:
Protons and Neutrons are found in the nucleus of an atom.
It is indeed true that scientists have known about the background radiation (commonly known as the Cosmic Microwave Background) since the early 60s. It was first discovered quite by accident by Penzias and Wilson working at Bell Labs, who detected it as an unexplainable interference in their precision radio equipment. When people finally figured out exactly what it was they were seeing, they won the Nobel Prize for their discovery. Only a few years before, George Gamow had predicted that if the Big Bang theory were correct, we should observe just such a background radiation. The CMB is not the only evidence in favor of the Big Bang, but it is one of the most important. It is a natural consequence of the theory, and is pretty unexplainable in steady-state cosmology.
The 15-20 billion year number comes not from the CMB, but rather predominantly from measurements of nearby and distant galaxies, particularly their rates of expansion away from us. We find that the distance to a galaxy is proportional to its recessional velocity. The constant of proportionality is the Hubble Constant, H, which turns out to be (approximately) the reciprocal of the age of the universe. So we measure the age by measuring recessional velocities. T = 1/H is only true, however, if the universe is not significantly accelerating or decelerating its expansion rate. If the rate of expansion is rapidly accelerating, the universe may be older than 1/H = 15 billion years, give or take. Such an acceleration would be caused by a large value of the Cosmological Constant, a sort of anti-gravity force predicted by General Relativity. There is some evidence that this might be the case.
So finally, yes, the age of the universe, being based on the empirical determination of H, is based on the observed evidence.
The answer is:
It is a measure of the strength of the bonds between ions.
Lattice energy is an estimate of the strength of the bonds formed by ionic compounds.
The first two choices are wrong because it is actually the opposite.
- As the ion size increases, lattice energy <u>decreases</u>.
- As charge of ions increases, lattice energy <u>increases</u>
As for the other third option, it is wrong because lattice energy is the energy RELEASED not absorbed.