Answer:
Option B. is the right answer.
Explanation:
Before developing a new technology, an engineer has to evaluate the advantages and disadvantages of the chemical used in order to clean water bodies. If the chemical has more disadvantages as compared to advantages, so its usage will be avoided while if the chemical does not harm the marine organisms of the ocean so it can be used for the purpose of cleaning. So we can say that first the engineer has to study the chemicals.
Answer:
119.85 grams Br or 120. grams Br (sig figs)
Explanation:
1.50 moles Br 79.90 g Br
--------------------- x ------------------------ = 119.85 grams Br or 120 grams Br (sig figs)
1 mole
Answer:
the change in energy of the gas mixture during the reaction is 227Kj
Explanation:
THIS IS THE COMPLETE QUESTION BELOW
Measurements show that the enthalpy of a mixture of gaseous reactants increases by 319kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that -92kJ of work is done on the mixture during the reaction. Calculate the change of energy of the gas mixture during the reaction in kJ.
From thermodynamics
ΔE= q + w
Where w= workdone on the system or by the system
q= heat added or remove
ΔE= change in the internal energy
q=+ 319kJ ( absorbed heat is + ve
w= -92kJ
If we substitute the given values,
ΔE= 319 + (-92)= 227 Kj
With the increase in enthalpy and there is absorbed heat, hence the reaction is an endothermic reaction.
Answer:
Limiting reactant = B2O3
Amount of BCl3 formed = 468 g
Explanation:
The given reaction is:

In order to identify the limiting reagent calculate the moles of B2O3, C and Cl2. The reagent with the lowest moles is the limiting reactant



Since the moles of B2O3 < C < Cl2, the limiting reactant is B2O3
Based on the reaction stoichiometry:
1 mole of B2O3 produces 2 moles of BCl3
Hence, the number of moles of BCl3 produced under the experimental conditions = 2*1.997=3.994 moles
