Answer:
0.799 m/s if air resistance is negligible.
Explanation:
For how long is the ball in the air?
Acceleration is constant. The change in the ball's height depends on the square of the time:
,
where
- is the change in the ball's height.
- is the acceleration due to gravity.
- is the time for which the ball is in the air.
- is the initial vertical velocity of the ball.
- The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground. .
- Gravity pulls objects toward the earth, so is also negative. near the surface of the earth.
- Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result, .
Solve for .
;
;
;
.
What's the initial horizontal velocity of the ball?
- Horizontal displacement of the ball: ;
- Time taken:
Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.
.
Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.
The net force acting on the object perpendicular to the table is
∑ F[perp] = F[normal] - mg = 0
where mg is the weight of the object. Then
F[normal] = mg = (15 kg) (9.8 m/s²) = 147 N
The maximum magnitude of static friction is then
0.40 F[normal] = 58.8 N
which means the applied 40 N force is not enough to make the object start to move. So the object has zero acceleration and does not move.
The concept required to solve this problem is related to the wavelength.
The wavelength can be defined as the distance between two positive crests of a wave.
The waves are in phase, then the first distance is
And out of the phase when
Thus the wavelength is
Here,
Wavelength
If we rearrange the equation to find it, we will have
Therefore the wavelength of the sound is 20cm.
To solve this problem it is necessary to apply the equation related to the Gravitational Force, the equation describes that
Where,
G = Gravitational Universal Constant
M = Mass of Earth (or Bigger star)
m = Mass of Object (or smallest star)
r = Radius
From the statement we know that once the impact is made, the golf ball is subjected to the forces that are exerted in nature. Since the air resistance, which would represent the drag force, is ignored. Only the forces related to gravity remain.
The gravitational force carries 'pushes' or 'attracts' the body towards the earth, while the speed decreases as it reaches its maximum height.
When the ball has reached its maximum height only the force of gravity begins to act on it, generating the attraction to the earth in parabolic motion.
Therefore the correct answer is B.
Electricity is a term used to describe the energy produced (usually to perform work) when electrons are caused to directional (not randomly) flow from atom to atom. ... This movement of electrons between atoms is called electrical current.