Driving a motor........
chemical energy is converted into kinetic energy.
Falling off of cliff
.........gravitational potential energy is converted into kinetic energy.
Hydroelectric energy generation
.......gravitational potential energy is converted into kinetic energy (i.e. driving a generator), which is then converted into electrical energy.
Nuclear power generation
.........mass is converted into energy, which then drives a steam turbine, which is then converted into electrical energy.
Answer:
A) If you look at the vertical rows you can tell how many electrons there are on the outer shell eg. Group 7 (eg. nitrogen) has 7 electrons on its outer shell
B) They are in the same group
C) Helium,Argon and Organessom are all Nobel gasses
Answer:
the one going faster would prolly stop and the one it hit would start rolling the opposite direction it was. like think about if u were playing pool.
Explanation:
They will become identical as if they were never broken
<h2>
Answer: The spreading of waves behind an aperture ismore for long wavelengths and less for short wavelengths</h2>
Here we are talking about Diffraction and, in fact, waves diffract the most when their wavelength is about the same size of the gap or aperture.
Diffraction happens when a wave (mechanical or electromagnetic wave) meets an obstacle or a slit .When this occurs, <u>the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
</u>
<u />
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs and the waves spread out greatly.
This means the smaller the slit or obstacle (diffracting object), the wider the resulting diffraction pattern, and the greater the obstacle, the narrower de resulting patter.