Given that the function of the wave is f(x) = cos(π•t/2), we have;
a. The graph of the function is attached
b. 4 units of time
c. Even
d. 4.935 J/kg
e. 1.234 W/kg
<h3>How can the factors of the wave be found?</h3>
a. Please find attached the graph of the signal created with GeoGebra
b. The period of the signal, T = 2•π/(π/2) = <u>4</u>
c. The signal is <u>even</u>, given that it is symmetrical about the y-axis
d. The energy of the signal is given by the formula;

Which gives;
E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>
e. The power of the wave is given by the formula;
E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>
Learn more about waves here:
brainly.com/question/14015797
Answer:
Label A: Battery, Label B: Light or Bulb, Label C: Switch
Explanation:
I got it right.
The pair of blocks is insulated, so no energy escapes. The pair of temperatures possible is 95 +95 temperature blocks.
<h3>What is thermal equilibrium?</h3>
When two objects are in direct contact and transfer heat through conduction. When the both object attain same temperature after sometime, they are called in thermal equilibrium.
Two identical blocks are heated to different temperatures. The blocks are placed so that they touch, and heat begins to flow between blocks. The heat will continue to until and unless they have same temperatures. After they being isolated, the temperature of both will be same and no heat is transferred outside.
Thus, the pair of temperatures possible is 95 +95 temperature blocks.
Learn more about temperature.
brainly.com/question/11464844
#SPJ1
Current = charge per second
2 Coulombs per second = 2 Amperes
Potential difference = (current)x(resistance) in volts.
That's (2 Amperes) x (2 ohms).
That's how to do it.
I think you can find the answer now.