<h2>Answer: Light waves have a redshift due to the Doppler effect
</h2>
The astronomer Edwin Powell Hubble observed several celestial bodies, and when obtaining the spectra of distant galaxies he observed the spectral lines were displaced towards the red (red shift), whereas the nearby galaxies showed a spectrum displaced to the blue.
From there, Hubble deduced that the farther the galaxy is, the more redshifted it is in its spectrum. <u>The same happens with the stars and this phenomenom is known as the Doppler effect.
</u>
This phenomenon refers to the change in a wave perceived frequency (or wavelength=color) when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other. For example, as a star moves away from the Earth, its espectrum turns towards the red.
Answer:
The intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
Explanation:
Given;
intensity of the sound level, dB = 60 dB
The intensity of the sound in W/m² is calculated as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C)
where;
I₀ is threshold of hearing = 1 x 10⁻¹² W/m²
I is intensity of the sound in W/m²
Substitute the given values and for I;
![dB = 10 Log[\frac{I}{I_o} ]\\\\60 = 10 Log[\frac{I}{I_o} ]\\\\6 = Log[\frac{I}{I_o} ]\\\\10^6 = \frac{I}{I_o} \\\\I = 10^6 \ \times \ I_o\\\\I = 10^6 \ \times \ 1^{-12} \ W/m^2 \\\\I = 1\ \times \ 10^{-6} \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C60%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C6%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C10%5E6%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%20I_o%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%201%5E%7B-12%7D%20%5C%20W%2Fm%5E2%20%5C%5C%5C%5CI%20%3D%201%5C%20%5Ctimes%20%5C%2010%5E%7B-6%7D%20%5C%20W%2Fm%5E2)
Therefore, the intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
The bigger the object the greater the gravitational pull, so the farther away the big object is its gravitational force begins to decrease. Refer to the picture for more explanation.