Kinetic energy<span> increases with the square of the velocity (KE=1/2*m*v^2). If the velocity is doubled, the KE quadruples. Therefore, the </span>stopping distance<span> should increase by a factor of four, assuming that the driver is </span>can<span> apply the brakes with sufficient precision to almost lock the brakes.</span>
Answer : The change in enthalpy of the reaction is, -310 kJ
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given main reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the change in enthalpy of the reaction is, -310 kJ
Answer:
T= 8.061N*m
Explanation:
The first thing to do is assume that the force is tangential to the square, so the torque is calculated as:
T = Fr
where F is the force, r the radius.
if we need the maximum torque we need the maximum radius, it means tha the radius is going to be the edge of the square.
Then, r is the distance between the edge and the center, so using the pythagorean theorem, r i equal to:
r = 
r = 0.5374m
Finally, replacing the value of r and F, we get that the maximun torque is:
T = 15N(0.5374m)
T= 8.061N*m
Multiply by (1000 meters / 1 km).
Then multiply by (1 hour / 3600 seconds).
Both of those fractions are equal to ' 1 ', because the top
and bottom numbers are equal, so the multiplications
won't change the VALUE of the 72 km/hr. They'll only
change the units.
(72 km/hour) · (1000 meters / 1 km) · (1 hour / 3600 seconds)
= (72 · 1000 / 3600) (km·meter·hour / hour·km·second)
= 20 meter/second
To calculate force, use the formula force equals mass times acceleration, or F = m × a. Make sure that the mass measurement you're using is in kilograms and the acceleration is in meters over seconds squared. When you've solved the equation, the force will be measured in Newtons.