There are two ways to find energy. Energy=F*d=mv^2. We can use this relationship to find v:
Answer:
1. 3 m
2. 27 s
Explanation:
1. "A car traveling at +33 m/s sees a red light and has to stop. If the driver can accelerate at -5.5 m/s², how far does it travel?"
Given:
v₀ = 33 m/s
v = 0 m/s
a = -5.5 m/s²
Unknown: Δx
To determine the equation you need, look for which variable you don't have and aren't solving for. In this case, we aren't given time and aren't solving for time. So look for an equation that doesn't have t in it.
Equation: v² = v₀² + 2aΔx
Substitute and solve:
(0 m/s)² = (33 m/s)² + 2(-5.5 m/s²) Δx
Δx = 3 m
2. "A plane starting from rest at one end of a runway accelerates at 4.8 m/s² for 1800 m. How long did it take to accelerate?"
Given:
v₀ = 0 m/s
a = 4.8 m/s²
Δx = 1800 m
Unknown: t
Equation: Δx = v₀ t + ½ a t²
Substitute and solve:
1800 m = (0 m/s) t + ½ (4.8 m/s²) t²
t ≈ 27 s
Answer:
Por ela ter batido na trave, não tem como voltar 2x mais forte, por que toda ação correspondente a uma reação de igual intensidade, mas que atua no sentido oposto
Explanation:
Answer:
A) Three hole punch and either a layered plastic or paper
B) Identify the lengths involved ,
Length of input arm / length of output arm = L1/ L2
Explanation:
<u>a) Materials involved includes :</u>
Three hole punch and either a layered plastic or paper
Identify the forces acting on the three-hole punch which are Input and output forces
Identify the points where they act
<u>B) procedures involved </u>
The mechanical advantage = output force / input force
step one: Identify the lengths involved
assuming no friction or relatively small friction \
mechanical advantage can be calculated as : Length of input arm / length of output arm = L1/ L2
Answer:
The correct answer is B)
Explanation:
When a wheel rotates without sliding, the straight-line distance covered by the wheel's center-of-mass is exactly equal to the rotational distance covered by a point on the edge of the wheel. So given that the distances and times are same, the translational speed of the center of the wheel amounts to or becomes the same as the rotational speed of a point on the edge of the wheel.
The formula for calculating the velocity of a point on the edge of the wheel is given as
= 2π r / T
Where
π is Pi which mathematically is approximately 3.14159
T is period of time
Vr is Velocity of the point on the edge of the wheel
The answer is left in Meters/Seconds so we will work with our information as is given in the question.
Vr = (2 x 3.14159 x 1.94m)/2.26
Vr = 12.1893692/2.26
Vr = 5.39352619469
Which is approximately 5.39
Cheers!