The picture isn’t clear so I can’t read the dimensions of the box but I can try my best to guide u through the question.
For part a u need to find the volume of the box as that will equal the volume of sand that can be filled inside.
For this u multiply the height, width and length of the box.
For part b the mass of sand alone will be
=Mass of box + sand - Mass of empty box
=216 - 40
=176 grams
For part c the density of sand can be calculated by the formula
Density= Mass/Volume
So the mass (176g) / volume from part a
For part d u need to know that something will float if it has a lower density than what it is floating in. If the final density of sand that was found in part c is less than the density of gold (19.3 g/cm^3) it will float. Otherwise it will sink.
Hope this helped!
Answer:
a) x₀ = - 2 m , b) y = 4.47 m
Explanation:
A wave travels in the middle with constant speed, let's use the equation of uniform motion
v = d / t
t = d / v
The distance to the first listeners, see attached
d₁ = x₀-x
t = (x₀ +7) / v
The distance to the second listener
d₂ = x - x₀
t = (+ 3- x₀) / v
As the wave arrives at the same time, we can equal the two equations
(x₀ +7) / v = (3 -x₀) / v
x₀ + 7 = 3 - x₀
2 x₀ = 3 - 7
x₀ = -4/2
x₀ = - 2 m
b) The time it takes for the wave to reach the listeners of the x-axis, where the speed of sound is 340 m / s
t = 5/340
t = 0.0147 s
Let's look for the distance the wave travels for the listener axis and
v = d₃ / t
d₃ = v.t
d₃ = 340 * 0.0147
d₃ = 5 m
For the distance component we use the Pythagorean triangle
d₃² = x₀² + y²
y² = d₃² - x₀²
y = √ (d₃² -4)
y = √ (5² -4)
y = 4.47 m
Power dissipation = (voltage across the component)² / (resistance of the component)
Since the resistance is in the denominator of the fraction in this formula for the
quantity of power dissipated, you can see that when the supply voltage is constant,
the smaller resistance dissipates more power.
So the <u>60w bulb</u> has lower resistance than the 40w bulb.
Nu its pressure, just did this rn, 8th grade how the ear works physical science test
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s