Answer:
taking a shower brushing your teeth and washing your hands
Explanation:
Answer:

& 
Explanation:
Given:
- interior temperature of box,

- height of the walls of box,

- thickness of each layer of bi-layered plywood,

- thermal conductivity of plywood,

- thickness of sandwiched Styrofoam,

- thermal conductivity of Styrofoam,

- exterior temperature,

<u>From the Fourier's law of conduction:</u>

....................................(1)
<u>Now calculating the equivalent thermal resistance for conductivity using electrical analogy:</u>




.....................(2)
Putting the value from (2) into (1):


is the heat per unit area of the wall.
The heat flux remains constant because the area is constant.
<u>For plywood-Styrofoam interface from inside:</u>



&<u>For Styrofoam-plywood interface from inside:</u>



The frequency doesn't change. If the wavespeed increases, then the wavelength must also increase ... It's just the distance the wave travels during each complete wiggle.
An elastic collision is one in which the system does not experience a net loss of kinetic energy as a result of the collision. In elastic collisions, momentum and kinetic energy are both conserved.
<h3>Explain about the Elastic Collision?</h3>
A collision between two bodies in physics is referred to as an elastic collision if their combined kinetic energy stays constant. There is no net conversion of kinetic energy into other forms, such as heat, noise, or potential energy, in an ideal, fully elastic collision
An example of an elastic collision is when two balls collide at a pool table. It is an elastic collision when you throw a ball on the ground and it bounces back into your hand because there is no net change in the kinetic energy.
If there is no kinetic energy lost in the impact, the collision is said to be perfectly elastic. A collision is considered to be inelastic if any of the kinetic energy is converted to another kind of energy during the collision.
To learn more about Elastic Collision refer to:
brainly.com/question/7694106
#SPJ4
Answer:

Explanation:
Ok, the average speed can be calculate with the next equation:
(1)
Basically the car cover the same distance "d" two times, but at different speeds, so:

and the total time would be the time t1 required to go from A to B plus the time t2 required to go back from B to A:

From basic physics we know:

so:


Using the previous information in equation (1)

Factoring:
(2)
Finally, replacing the data in (2)
