Answer:
a) 
b) 
c) Q = 1.256 × 10⁻³ m³/s
Explanation:
Given:
The velocity profile as:

Now, the maximum velocity of the flow is obtained at the center of the pipe
i.e r = 0
thus,

or

Now,

or

or

Now, the flow rate is given as:
Q = Area of cross-section of pipe × 
or
Q = 
or
Q = 
or
Q = 1.256 × 10⁻³ m³/s
Answer:
I = 0.002593 A = 2.593 mA
Explanation:
Current density = J = (3.00 × 10⁸)r² = Br²
B = (3.00 × 10⁸) (for ease of calculations)
The current through outer section is given by
I = ∫ J dA
The elemental Area for the wire,
dA = 2πr dr
I = ∫ Br² (2πr dr)
I = ∫ 2Bπ r³ dr
I = 2Bπ ∫ r³ dr
I = 2Bπ [r⁴/4] (evaluating this integral from r = 0.900R to r = R]
I = (Bπ/2) [R⁴ - (0.9R)⁴]
I = (Bπ/2) [R⁴ - 0.6561R⁴]
I = (Bπ/2) (0.3439R⁴)
I = (Bπ) (0.17195R⁴)
Recall B = (3.00 × 10⁸)
R = 2.00 mm = 0.002 m
I = (3.00 × 10⁸ × π) [0.17195 × (0.002⁴)]
I = 0.0025929449 A = 0.002593 A = 2.593 mA
Hope this Helps!!!
A: 0.7 -0.8 and 0hrs
B: 0.2 - 0.4 and 1.0 -1.1 hrs
C: 0-0.2 hrs and 0.8 - 1.0 hrs
D: 0.4 - 0.7 hrs
Answer:
The power of the distance is -1.
Explanation:
The equation for the electric potential of a point charge is given by 
where V is the electric potential, k is Coulomb's constant (it has a value of
with units
), q is the electric charge of the small charge and r is the distance from the charge.
Now, the power of a number is how many times we multiply that number by itself; we see r appears only once in the equation. So we know the power is 1. But we can see in the equation that k and q are divided by r, which means r is the denominator. This means the power of r is negative (-).
Therefore, the power of r is -1.
Answer:
kinetic mechanical energy