Time taken by the water balloon to reach the bottom will be given as

here we know that


now by the above formula



now in the same time interval we can say the distance moved by it will be


so it will fall at a distance 15.7 m from its initial position
I believe the correct answer is atmosphere (D).
Correct question is;
1/0.12 = (1/0.05) + (1/d')
Answer:
d' = -1/700
Explanation:
1/0.12 = (1/0.05) + (1/d')
Let's rearrange to get;
(1/d') = (1/0.12) - (1/0.05)
(1/d') = (1/(12/100)) - (1/(5/100))
(1/d') = 100/12 - 100/5
Let's multiply through by 60 to get rid of the denominators on the right side;
> (1/d') = 500 - 1200
> (1/d') = -700
> d' = -1/700
The answer is 175184.08 joules
Answer:
C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of Fr.
Explanation:
Yo want to prove the following equation:

That is, the net force exerted on an object is equal to the change in the kinetic energy of the object.
The previous equation is also equal to:
(1)
m: mass of the block
vf: final velocity
v_o: initial velocity
Ff: friction force
F(x): Force
x: distance
You know the values of vf, m and x.
In order to prove the equation (1) it is necessary that you have C The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F. Thus you can calculate experimentally both sides of the equation.