Answer: At time 18.33 seconds it will have moved 500 meters.
Explanation:
Since the acceleration of the car is a linear function of time it can be written as a function of time as


Integrating both sides we get

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0
again integrating with respect to time we get

Now let us assume that car starts from origin thus D=0
thus in the first 15 seconds it covers a distance of

Thus the remaining 125 meters will be covered with a constant speed of

in time equalling 
Thus the total time it requires equals 15+3.33 seconds
t=18.33 seconds
Answer:
Blank wall
Explanation:
A wall that cannot be moved because it is carrying the weight of the roof is considered a blank wall.
Video game designer for sure
<h2>
ANSWER</h2><h2>
</h2>
I had a couple of answers for this, but when I checked nothing
was right, so im not sure.
<h2>
</h2>
Answer:
flow ( m ) = 4.852 kg/s
Explanation:
Given:
- Inlet of Turbine
P_1 = 10 MPa
T_1 = 500 C
- Outlet of Turbine
P_2 = 10 KPa
x = 0.9
- Power output of Turbine W_out = 5 MW
Find:
Determine the mass ow rate required
Solution:
- Use steam Table A.4 to determine specific enthalpy for inlet conditions:
P_1 = 10 MPa
T_1 = 500 C ---------- > h_1 = 3375.1 KJ/kg
- Use steam Table A.6 to determine specific enthalpy for outlet conditions:
P_2 = 10 KPa -------------> h_f = 191.81 KJ/kg
x = 0.9 -------------> h_fg = 2392.1 KJ/kg
h_2 = h_f + x*h_fg
h_2 = 191.81 + 0.9*2392.1 = 2344.7 KJ/kg
- The work produced by the turbine W_out is given by first Law of thermodynamics:
W_out = flow(m) * ( h_1 - h_2 )
flow ( m ) = W_out / ( h_1 - h_2 )
- Plug in values:
flow ( m ) = 5*10^3 / ( 3375.1 - 2344.7 )
flow ( m ) = 4.852 kg/s