1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ZanzabumX [31]
3 years ago
13

A certain working substance receives 100 Btu reversibly as heat at a temperature of 1000℉ from an energy source at 3600°R. Refer

red to as receiver temperature of 80℉, calculate: A. the available energy of the working substance ( 63 Btu ) B. the available portion of the 100 Btu added at the source temperature ( 85 Btu ) C. the reduction in available energy between the source temperature and the 1000℉ temperature ( 22 Btu )
Engineering
1 answer:
Valentin [98]3 years ago
6 0

Answer:

Explanation:

t1 = 1000 F = 1460 R

t0 = 80 F = 540 R

T2 = 3600 R

The working substance has an available energy in reference to the 80F source of:

B1 = Q1 * (1 - T0 / T1)

B1 = 100 * (1 - 540 / 1460) = 63 BTU

The available energy of the heat from the heat wource at 3600 R is

B2 = Q1 * (1 - T0 / T2)

B2 = 100 * (1 - 540 / 3600) = 85 BTU

The reduction of available energy between the source and the 1460 R temperature is:

B3 = B2 - B1 = 85 - 63 = 22 BTU

You might be interested in
A sample of sand weighs 490 g in stock and 475 in Oven Dry (OD) condition, respectively. If absorption capability of the sand is
Ivahew [28]

The weight of the specimen in SSD condition is 373.3 cc

<u>Explanation</u>:

a) Apparent specific gravity = \frac{A}{A-C}

Where,

A = mass of oven dried test sample in air = 1034 g

B = saturated surface test sample in air = 1048.9 g

C = apparent mass of saturated test sample in water = 975.6 g

apparent specific gravity = \frac{A}{A-C}

                                         = \frac{1034}{1034-675 \cdot 6}

Apparent specific gravity = 2.88

b) Bulk specific gravity G_{B}^{O D}=\frac{A}{B-C}

G_{B}^{O D}=\frac{1034}{1048.9-675 \cdot 6}

       =  2.76

c) Bulk specific gravity (SSD):

G_{B}^{S S D}=\frac{B}{B-C}

=\frac{1048 \cdot 9}{1048 \cdot 9-675 \cdot 6}

G_{B}^{S S D} = 2.80

d) Absorption% :

=\frac{B-A}{A} \times 100 \%

=\frac{1048 \cdot 9-1034}{1034} \times 100

Absorption = 1.44 %

e) Bulk Volume :

v_{b}=\frac{\text { weight of dispaced water }}{P \omega t}

=\frac{1048 \cdot 9-675 \cdot 6}{1}

= 373.3 cc

5 0
3 years ago
After replacing a vacuum booster, the brakes lock up on a road test. Technician A says there is air trapped inside the brake lin
vitfil [10]

Answer:

Technician B

Explanation:

The brakes can lockup due to the following reasons

1) Overheating break systems

2) Use of wrong brake fluid

3) Broken or damaged drum brake backing plates, rotors, or calipers

4) A defective ABS part, or a defective parking mechanism or proportioning valve

5) Brake wheel cylinders, worn off

6) Misaligned power brake booster component

5 0
3 years ago
Integer to Float Conversion All labs must be done during lab time. Each labs worth 10 points The lab can be hand in next day wit
andrew-mc [135]

Answer:

Code explained below

Explanation:

.data

msg1: .asciiz "Please input a temperature in celsius: "

msg2: .asciiz "The temperature in Fahrenheit is: => "

num: .float 0.0

.text

main:

#print the msg1

li $v0, 4

la $a0, msg1

syscall

#read the float value from user

li $v0,6 #read float syscall value is $v0

syscall #read value stored in $f0

#formula for celsius to fahrenheit is

#(temperature(C)* 9/5)+32

#li.s means load immediate float

#copy value 9.0 to $f2

li.s $f2,9.0  

#copy value 5.0 to $f3

li.s $f3,5.0

# following instructions performs: 9/5

#div.s - division of two float numbers

#divide $f2 and f3.Result will stores in $f1

div.s $f1,$f2,$f3

#following instruction performs: temperature(C) * (9/5)

#multiple $f1 and $f0.Result stored in $f1

mul.s $f1,$f1,$f0

#copy value 32 to $f4

li.s $f4,32.0

#following instruction performs: (temperature(C) * (9/5))+32

#add $f1 and $f4.Result stores in $f1

add.s $f1,$f1,$f4

#store float from $f1 to num

s.s $f1,num

#print the msg2

li $v0, 4 #print string syscall value is 4

la $a0, msg2 #copy address of msg2 to $a0

#print the float

syscall

li $v0,2 #print float syscall value is 2

l.s $f12,num #load value in num to $f12

syscall

#terminate the program

li $v0, 10 #terminate the program syscall value is 10

syscall

4 0
3 years ago
Calculate the osmotic pressure of seawater containing 3.5 wt % NaCl at 25 °C . If reverse osmosis is applied to treat seawater,
AlladinOne [14]

Answer:

Highest osmotic pressure that membrane may experience is

' =58.638 atm

Explanation:

Suppose sea-water taken is M= 1 kg

Density of water = 1000 kg/m3

Therefore Volume of water= Mass,M/Density of water

V= 1 kg/(1000 kg/m3)

V= 10-3 m3= 1 Litre

Since mass of Nacl is 3.5 wt%,Therefore in 1 kg of water

Mass present of NaCl= m= 0.035*1000 g

m= 35 g

Since molecular weight of NaCl= 58.44 g/mol =M.W.

Thus its Number of moles of Nacl= m/M.W

nNaCl= 35g/58.44 gmol-1

= 0.5989 mol

ans since volume of solution is 1 L thus concentration of NaCl is ,C= number of moles/Volume of solution in Litres

C= 0.5989mol/ 1L

=0.5989 M

Since 1 mol NaCL disssociates to form 2 moles of ions of Na+ andCl- Thus van't hoff factor i=2

And osmotic pressure  = iCRT ------------------------------(1)( Where R= 0.0821 L.atm/mol.K and T= 25oC= 298.15 K)

Putting in equation 1 ,we get  = 2*(0.5989 mol/L)*(0.0821 L.atm/mol.K)*298.15 K

=29.319 atm

Now as the water gets filtered out of the membrane,the water's volume decreases and concentration C of NacL increases, thus osmotic pressure also increases.Thus, at 50% water been already filtered out, the osmotic pressure at the membrane will be maximum

Thus Volume of water left after 50% is filtered out as fresh water= 0.5 L (assuming no salt passes through semi permeable membrane)

Thus New concentration of NaCl C'= 2*C

C'=2*0.5989 M

=1.1978 M

and Since Osmotic pressure is directly proportional to concentration, Thus As concentration C doubles to C', Osmotic Pressure  ' also doubles from  ,

Thus,Highest osmotic pressure that membrane may experience is,  '=2*  

=2*29.319 atm

' =58.638 atm

3 0
3 years ago
What happen to the clutch system when you step-on and releasing the clutch pedal?​
soldi70 [24.7K]

Answer:

Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.

Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.

7 0
3 years ago
Other questions:
  • An overhead 25m long, uninsulated industrial steam pipe of 100mm diameter is routed through a building whose walls and air are a
    9·1 answer
  • What are the disadvantages of using 3D ink jet printing ??
    8·1 answer
  • Admission to an aquarium is $14 per person. There is also an IMAX theatre in the building, which charges $8 per ticket for a 3D
    8·1 answer
  • Practice Problem: True Stress and Strain A cylindrical specimen of a metal alloy 49.9 mm long and 9.72 mm in diameter is stresse
    13·1 answer
  • What is the term for removing refrigerant in any condition from a system and storing it in an external container without necessa
    10·1 answer
  • 5) Initially, the pressure and temperature of steam inside a solid capsule is at 100-pound force per square inch absolute (psia)
    6·1 answer
  • Summarize the difference in hydraulic and pneumatic systems.
    12·1 answer
  • You filled a balloon that has a volume of 45 cm3 with helium gas. What is the volume of the helium gas?
    13·1 answer
  • DUE AT 3:00!!!!!
    13·2 answers
  • Hey friends.... ajao bat Kare ✌️✌️❤️​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!