Answer:
5.6L
Explanation:
At STP, the pressure and temperature of an ideal gas is
P = 1 atm
T = 273.15k
Volume =?
Mass = 9.5g
From ideal gas equation,
PV = nRT
P = pressure
V = volume
n = number of moles
R = ideal gas constant =0.082J/mol.K
T = temperature of the ideal gas
Number of moles = mass / molar mass
Molar mass of F2 = 37.99g/mol
Number of moles = mass / molar mass
Number of moles = 9.5 / 37.99
Number of moles = 0.25moles
PV = nRT
V = nRT/ P
V = (0.25 × 0.082 × 273.15) / 1
V = 5.599L = 5.6L
The volume of the gas is 5.6L
Answer:
Normalidad = 4N
%p/V = 27.6%
Explanation:
La solución 2M de carbonato de potasio contiene 2moles de carbonato por litro de solución. La normalidad son los equivalente de carbonato de potasio (2eq/mol) por litro de solución:
2moles * (2eq/mol) = 4eq / 1L = 4N
El porcentaje peso volumen es el peso de carbonato en gramos dividido en el volumen en mL por 100:
%p/V:
Masa K2CO3 -Masa molar: 138.205g/mol-
2moles * (138.205g/mol) = 276g K2CO3
Volumen:
1L * (1000mL/1L) = 1000mL
%p/V:
276g K2CO3 / 1000mL * 100
<h3>%p/V = 27.6%</h3>
The orbital hybridization of the central carbon atom in CSe2 is sp.
In chemical bonding, atomic orbitals may be combined to form appropriate hybrid orbitals suitable for bonding. The orbitals that combine during hybridization must be close enough in energy.
In the compound Cse2, carbon is the central atom bonded to two selenium atoms. The carbon atom in CSe2 is sp hybridized.
Learn more about orbital hybridization: brainly.com/question/1869903
Answer:
P2=0.385atm
Explanation:
step one:
Given that the temperature T1= 60 Celcius
we can convert this to kelvin by adding 273k to 60 Celcius
we have T1= 333k
pressure P1= 0.470 atm
step two:
we know that the standard temperature is T2= 273K
Applying the temperature and pressure relationship we have
P1/T1=P2/T2
substituting our given data we have
0.47/333=P2/273
cross multiply we have
P2= (0.47*273)/333
P2= 128.31/333
P2=0.385 atm
Because a copper ion looses electrons, meaning it's negatively charged, and positives and negatives attract.