Explanation:
As it is given that water level is same as outside which means that theoretically, P = 756.0 torr.
So, using ideal gas equation we will calculate the number of moles as follows.
PV = nRT
or, n = 
= 
= 0.0052 mol
Also, No. of moles = 
0.0052 mol = 
mass = 0.0104 g
As some of the water over which the hydrogen gas has been collected is present in the form of water vapor. Therefore, at
= 24 mm Hg
=
atm
= 0.03158 atm
Now, P = 
= 0.963 atm
Hence, n =
= 0.0056 mol
So, mass of
= 0.0056 mol × 2
= 0.01013 g (actual yield)
Therefore, calculate the percentage yield as follows.
Percent yield = 
=
= 97.49%
Thus, we can conclude that the percent yield of hydrogen for the given reaction is 97.49%.
Answer:
Forming a problem requires the scientist to use creativity to imagine new solutions.
Explanation:
Albert Einstein remains a critically prominent figure who conducted remarkable, ground-breaking research that not only formed the foundations of modern physics but also strongly affected the scientific world. It is difficult to teach imagination but it can be harnessed and accepted. Nothing incites our imaginative impulses we love more than the prospect of immediate creative inspiration. And creativity hits its full potential when paired with the experience, insights, and skills people gained by questioning the real-life problems.
Explanation:
Reaction equation is as follows.

Here, 1 mole of
produces 2 moles of cations.
![[Na^{+}] = 2[Na_{2}SO_{3}] = 2 \times 0.58](https://tex.z-dn.net/?f=%5BNa%5E%7B%2B%7D%5D%20%3D%202%5BNa_%7B2%7DSO_%7B3%7D%5D%20%3D%202%20%5Ctimes%200.58)
= 1.16 M
= 0.58 M
The sulphite anion will act as a base and react with
to form
and
.
As, 
= 
=
According to the ICE table for the given reaction,

Initial: 0.58 0 0
Change: -x +x +x
Equilibrium: 0.58 - x x x
So,
![K_{b} = \frac{[HSO^{-}_{3}][OH^{-}]}{[SO^{2-}_{3}]}](https://tex.z-dn.net/?f=K_%7Bb%7D%20%3D%20%5Cfrac%7B%5BHSO%5E%7B-%7D_%7B3%7D%5D%5BOH%5E%7B-%7D%5D%7D%7B%5BSO%5E%7B2-%7D_%7B3%7D%5D%7D)


x = 0.0003 M
So, x =
= 0.0003 M
= 0.58 - 0.0003
= 0.579 M
Now, we will use
= 0.0003 M
The reaction will be as follows.

Initial: 0.0003
Equilibrium: 0.0003 - x x x


= 
= 
Therefore, 
As, x <<<< 0.0003. So, we can neglect x.
Therefore, 
= 
x = 
x =
= 
![[H^{+}] = \frac{10^{-14}}{[OH^{-}]}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B10%5E%7B-14%7D%7D%7B%5BOH%5E%7B-%7D%5D%7D)
= 
=
M
Thus, we can conclude that the concentration of spectator ion is
M.
One way of expressing concentration is by percent. It may be on the basis of mass, mole or volume. Percent is expressed as the amount of solute per amount of the solution. For this case, we are given the percent by mass. In order to solve the amount of solute, we multiply the percent with the amount of the solution.
Mass of solute = percent by mass x mass solution
Mass of solute = 0.0350 x 2.50 x10^2 = 8.75 grams of solute