Answer:
119.35 mm
Explanation:
Given:
Inside diameter, d = 100 mm
Tensile load, P = 400 kN
Stress = 120 MPa
let the outside diameter be 'D'
Now,
Stress is given as:
stress = Load × Area
also,
Area of hollow pipe =
or
Area of hollow pipe =
thus,
400 × 10³ N = 120 ×
or
D² = tex]\frac{400\times10^3+30\pi\times10^4}{30\pi}[/tex]
or
D = 119.35 mm
Someone dropped a gallon of milk and you parked over it
Answer:
I don't know ☺️☺️☺️❌‼️
Explanation:
I don't understand this question
Answer:
The velocity of the fluid is 1.1012 m/s
Solution:
As per the question, for the fluid:
Diameter of the capillary tube, d = 1.0 mm = 
Reynolds No., R = 1000
Kinematic viscosity, 
Now, for the fluid velocity, we use the relation:

where
= velocity of fluid

