Answer:
2.2 °C/m
Explanation:
It seems the question is incomplete. However, this problem has been found in a web search, with values as follow:
" A certain substance X melts at a temperature of -9.9 °C. But if a 350 g sample of X is prepared with 31.8 g of urea (CH₄N₂O) dissolved in it, the sample is found to have a melting point of -13.2°C instead. Calculate the molal freezing point depression constant of X. Round your answer to 2 significant digits. "
So we use the formula for <em>freezing point depression</em>:
In this case, ΔTf = 13.2 - 9.9 = 3.3°C
m is the molality (moles solute/kg solvent)
- 350 g X ⇒ 350/1000 = 0.35 kg X
- 31.8 g Urea ÷ 60 g/mol = 0.53 mol Urea
Molality = 0.53 / 0.35 = 1.51 m
So now we have all the required data to <u>solve for Kf</u>:
Answer:
By taking away research funds if certain standards ar not met
Explanation:
Answer:
10 L of CO₂.
Explanation:
The balanced equation for the reaction is given below:
2CO + O₂ —> 2CO₂
From the balanced equation above,
2 L of CO reacted to produce 2 L of CO₂.
Finally, we shall determine the volume of CO₂ produced by the reaction of 10 L CO. This can be obtained as follow:
From the balanced equation above,
2 L of CO reacted to produce 2 L of CO₂.
Therefore, 10 L of CO will also react to produce 10 L of CO₂.
Thus, 10 L of CO₂ were obtained from the reaction.
Answer:
It is A) Calcium
Explanation:
Calcium has an electronic configuration of 2,8,8,2
B is the correct answer for it