Explanation:
The pressure exerted by vapors or gas on the surface of a liquid is known as vapor pressure.
This means that weaker is the intermolecular forces present in a substance more easily it can form vapors. As a result, it will have high vapor pressure.
As substance B has high vapor pressure which means that it has weak intermolecular forces.
Also, stronger is the intermolecular forces present in a substance more will be its boiling point. Hence, more energy or temperature is required to break the bonds. Hence, substance A has higher boiling point and high heat of vaporization.
When surrounding pressure is less than or equal to its vapor pressure then substance B boils into the gas phase. Hence, substance B will be a gas at 300 mm Hg.
Therefore, we can conclude that characteristics of the two substances will be as follows.
(a) Substance B - has weaker intermoclcular
(b) Substance A - has a higher boiling point
(c) Substance B - is a gas at 300 mm Hg
(d) Substance A - has a higher heat of vaporization
It tell us the most accurate time u can get out of a clock
NaOH + HBr =⇒ NaBr + H2O
35.0 ml HBr x 1 liter/1000 mL x 0.140 moles HBr/ liter = 0.0049 moles HBr
0.0049 moles HBr x 1mole NaOH/1mole HBr = 0.0049 moles HBr
0.0049 moles HBr x 1 liter NaOH/0.200 moles NaOH x 1000 mL/1liter= 24.5 mL NaOH
Answer:
Explanation:
Applying the Heisenberg uncertainty principle,
Δx X mΔv = h/4π
where Δx = uncertainty in measurement of position
Δv = uncertainty in measurement of velocity
m = mass of object
h = planck's constant
Here:
Δv = 0.4 A° = 4.0 x 10^-11 m
mass, m = 9.11 x 10^-31 Kg
Plugging the values,
4.0 x 10^-11 x Δ v = (6.626 x 10^-34) / (4 x 3.14 x 9.11E-31)
4.0 x 10^-11 x Δ v = 5.791 x 10^-5
Δv = 1.448 x 10^6 m/s, the uncertainty in its velocity
Answer = 1.45 x 10^6 m/s