1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
11

The following reaction is exothermic. C6H12O6(s)+6O2(g)⇌6CO2(g)+6H2O(g)C6H12O6(s)+6O2(g)⇌6CO2(g)+6H2O(g) Predict the effect (shi

ft right, shift left, or no effect) of increasing and decreasing the reaction temperature.
Chemistry
2 answers:
Zigmanuir [339]3 years ago
6 0

Answer:

According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.

Explanation:

C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)

We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.

According to Le Chatelier's principle,

1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.

2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.

3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.

MAVERICK [17]3 years ago
6 0

Answer:

Increasing temperature = balance will shift to the left

Decreasing temperature = balance will shift to the right

Explanation:

Step 1: Data given

The increase or decrease in temperature can have an influence on the position of the equilibrium.

If the temperature is increased, the system will ensure that less heat is released. So the balance will shift to the left.

When the temperature drops, however, the system will produce more heat: the balance will shift to the right.

Step 2: The balanced equation

C6H12O6(s) + 6O2(g) ⇌ 6CO2(g) + 6H2O(g)

This is an endothermic reaction

Step 3: Increasing the temperature

If the temperature were increased, the heat content of the system would increase.

In exothermic reactions, increase in temperature decreases the K value. This means less products will be formed. The balance will shift to the left.

Step 4: Decreasing the temperature

If the temperature were decreased, the heat content of the system would increase.

In exothermic reactions, decrease in temperature increases the K value. This means more products will be formed, less reactants. The balance will shift to the right.

You might be interested in
What are body parts that have lost their original function through evolution?
katrin2010 [14]

Answer:

Vestigial structures are body parts that have lost their use through evolution.

6 0
2 years ago
A certain drug has a half-life in the body of 3.5h. Suppose a patient takes one 200.Mg pill at :500PM and another identical pill
tekilochka [14]

Answer:

The amount of drug left in his body at 7:00 pm is 315.7 mg.

Explanation:

First, we need to find the amount of drug in the body at 90 min by using the exponential decay equation:

N_{t} = N_{0}e^{-\lambda t}

Where:

λ: is the decay constant = ln(2)/t_{1/2}

t_{1/2}: is the half-life of the drug = 3.5 h

N(t): is the quantity of the drug at time t

N₀: is the initial quantity

After 90 min and before he takes the other 200 mg pill, we have:

N_{t} = 200e^{-\frac{ln(2)}{3.5 h}*90 min*\frac{1 h}{60 min}} = 148.6 mg

Now, at 7:00 pm we have:

t = 7:00 pm - (5:00 pm + 90 min) = 30 min

N_{t} = (200 + 148.6)e^{-\frac{ln(2)}{3.5 h}*30 min*\frac{1 h}{60 min}} = 315.7 mg    

Therefore, the amount of drug left in his body at 7:00 pm is 315.7 mg (from an initial amount of 400 mg).

I hope it helps you!

3 0
2 years ago
Dr. Patel and her team have been using GPS to track two plates that are moving toward each
Andru [333]

C: One plate is going underneath the other plate and sinking into the soft rock below.

Explanation:

Where plates are moving towards each other they are said to converging, and are called convergent margins.

The lithosphere is broken into series of slabs called plates. The plates moves on the weak and relatively soft asthenosphere below.

Plates have different motion. At some places, they move apart and they are said to be divergent.

When plates moves towards each other, they are convergent. At a convergent margin, a plate collides with another thereby causing the denser plate usually the oceanic plate to subduct into the asthenosphere. In some other cases, the plates can collide and build upward.

Learn more:

Lithosphere brainly.com/question/9582362

#learnwithBrainly

7 0
3 years ago
The principal component of mothballs is naphthalene, a compound with a molecular mass of about 130 amu, containing only carbon a
DIA [1.3K]

Answer:

Empirical formula = C5H4

Molecular formula = C10H8

Explanation:

When the 3000 mg of naphthalene are burned they produce 10.3 mg of CO2. Knowing the unbalanced equation of the combustion of naphthalene, we have:

CxHy + O2 = CO2 + H2O

We calculate the molar composition of the sample. We look for the molecular weights in the periodic table:

CO2 = 12,011 + 2 (15,999) = 44,009 g

Mol C = 10.3 mg * (1 mol CO2 / 44.009 g CO2) * (1 mol C / 1 mol CO2) = 0.234 mmol C

Mass C = 0.234 mmol C * (12.011 g C / 1 mol C) = 2.8105 mg C

Mass H = 3 mg - 2.8105 mg = 0.1895 mg H

Mol H = 0.1895 mg H * (1 mol H / 1,008 g H) = 0.188 mmol H

To calculate the empirical formula, we must divide the number of moles of each element by the smallest number of moles, in this case, of hydrogen:

C = 0.2340 mmol C / 0.1895 mol H = 1.25

H = 0.1895 mmol H / 0.1895 mmol H = 1

We multiply the coefficients by 4, and we have the empirical formula:

C1.25 * 4H1 * 4 = C5H4

The molecular formula is equal to (C5H4)m, where m is calculated by the molecular and empirical mass ratio, as follows:

Empirical mass = (5 * 12.011) + (4 * 1.008) = 64.09 g

m = 130 g / 64.09 g = 2.02 = 2

Therefore we have the molecular formula:

(C5H4)2 = C10H8

4 0
3 years ago
Which element has the strongest attraction for electrons?
NemiM [27]

Answer:

The answer is Flourine

3 0
3 years ago
Other questions:
  • A gas has a volume of 25.6 L at a temperature of 278 K. What will be the new temperature, in C, if
    14·1 answer
  • In the equation c2h4 + 3o2 = ? co2 + 2h2o, how many co2 molecules are needed to balance the equation?
    7·1 answer
  • The empirical formula for two compounds that have very different properties (one tastes very sour and the other very sweet) is c
    12·2 answers
  • After the food has been chewed and lubricated, it is pushed by the tongue into the___________.
    14·2 answers
  • What determines when a system reaches equilibrium? What observations can be made about a system once equilibrium has been establ
    10·1 answer
  • An equilibrium mixture of PCl5(g), PCl3(g), and Cl2(g) has partial pressures of 217.0 Torr, 13.2 Torr, and 13.2 Torr, respective
    11·1 answer
  • Which has more gravity<br> A. Earth<br> B. Moon<br> C .Sun<br> D. Saturn
    15·2 answers
  • What are the answer??
    9·1 answer
  • Which word should replace the question mark in the diagram?
    7·2 answers
  • In order to comply with the requirement that energy be conserved, Einstein showed in the photoelectric effect that the energy of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!