Answer is: both reactions are exothermic.
<span>In exothermic reactions, heat is released and enthalpy of reaction is less than zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is <span>exothermic heat is included as a
product (as it show first chemical reaction).</span></span>
The answer is B.
plz mark me as brainliest. i really need it.
Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
<u>Chemical reaction involved</u>: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient:
<u>To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:</u>
<u>Therefore, the Gibb's free energy change at 37° C (310.15 K): </u><u>ΔG = (-2.45 kJ/mol)</u>
Answer:
Explanation:
Given that:-
Pressure =
The expression for the conversion of pressure in Pascal to pressure in atm is shown below:
P (Pa) = P (atm)
Given the value of pressure = 43,836 Pa
So,
= atm
Pressure = 6.80977 atm
Volume = = 2.3 L ( 1 m³ = 1000 L)
n = 2 mol
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
6.80977 atm × 2.3 L = 2 mol × 0.0821 L.atm/K.mol × T
⇒T = 95.39 K
The expression for the kinetic energy is:-
k is Boltzmann's constant =
T is the temperature
So,