1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
3 years ago
5

In a chemical reaction, the atoms or starting molecules, are different from the products or ending molecules. atoms are neither

created, nor destroyed – simply rearranged asare and new are which occurs due to the transfer of .
Chemistry
1 answer:
bekas [8.4K]3 years ago
8 0
Electrons.

Have a read on REDOX.
You might be interested in
Write the balanced equation for the reaction of aqueous Pb ( ClO 3 ) 2 with aqueous NaI . Include phases. chemical equation: Wha
Citrus2011 [14]

<u>Answer:</u> The mass of lead iodide produced is 9.22 grams

<u>Explanation:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}

Molarity of NaI = 0.200 M

Volume of solution = 0.200 L

Putting values in above equation, we get:

0.200M=\frac{\text{Moles of NaI}}{0.200}\\\\\text{Moles of NaI}=(0.200mol/L\times 0.200L)=0.04moles

The chemical equation for the reaction of NaI and lead chlorate follows:

Pb(ClO_3)_2(aq.)+2NaI(aq.)\rightarrow PbI_2(s)+2NaClO_3(aq.)

By Stoichiometry of the reaction:

2 moles of NaI reacts produces 1 mole of lead iodide

So, 0.04 moles of NaI will react with = \frac{1}{2}\times 0.04=0.02mol of lead iodide

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Molar mass of lead iodide = 461 g/mol

Moles of lead iodide= 0.02 moles

Putting values in above equation, we get:

0.02mol=\frac{\text{Mass of lead iodide}}{461g/mol}\\\\\text{Mass of lead iodide}=(0.02mol\times 461g/mol)=9.22g

Hence, the mass of lead iodide produced is 9.22 grams

6 0
3 years ago
Give the electronic configuration of carbon atom.​
zimovet [89]

Answer:

1s2 2s2 2p2

Explanation:

it has 6 electrons in two energy levels so the sub levels are 1s, 2s and 2p

4 0
3 years ago
If volumes are additive and 253 mL of 0.19 M potassium bromide is mixed with 441 mL of a potassium dichromate solution to give a
Alexxx [7]

Answer:

The concentration of the Potassium Dichromate solution is 0.611 M

Explanation:

First of all, we need to understand that in the final solution we'll have potassium ions coming from KBr and also K2Cr2O7, so we state the dissociation equations of both compounds:

KBr (aq) → K+ (aq) + Br- (aq)

K2Cr2O7 (aq) → 2K+ (aq) + Cr2O7 2- (aq)

According to these balanced equations when 1 mole of KBr dissociates, it generates 1 mole of potassium ions. Following the same thought, when 1 mole of K2Cr2O7 dissociates, we obtain 2 moles of potassium ions instead.

Having said that, we calculate the moles of potassium ions coming from the KBr solution:

0.19 M KBr: this means that we have 0.19 moles of KBr in 1000 mL solution. So:

1000 mL solution ----- 0.19 moles of KBr

253 mL solution ----- x = 0.04807 moles of KBr

As we said before, 1 mole of KBr will contribute with 1 mole of K+, so at the moment we have 0.04807 moles of K+.

Now, we are told that the final concentration of K+ is 0.846 M. This means we have 0.846 moles of K+ in 1000 mL solution. Considering that volumes are additive, we calculate the amount of K+ moles we have in the final volume solution (441 mL + 253 mL = 694 mL):

1000 mL solution ----- 0.846 moles K+

694 mL solution ----- x = 0.587124 moles K+

This is the final quantity of potassium ion moles we have present once we mixed the KBr and K2Cr2O7 solutions. Because we already know the amount of K+ moles that were added with the KBr solution (0.04807 moles), we can calculate the contribution corresponding to K2Cr2O7:

0.587124 final K+ moles - 0.04807 K+ moles from KBr = 0.539054 K+ moles from K2Cr2O7

If we go back and take a look a the chemical reactions, we can see that 1 mole of K2Cr2O7 dissociates into 2 moles of K+ ions, so:

2 K+ moles ----- 1 K2Cr2O7 mole

0.539054 K+ moles ---- x = 0.269527 K2Cr2O7 moles

Now this quantity of potassium dichromate moles came from the respective  solution, that is 441 mL, so we calculate the amount of them that would be present in 1000 mL to determine de molar concentration:

441 mL ----- 0.269527 K2Cr2O7 moles

1000 mL ----- x = 0.6112 K2Cr2O7 moles = 0.6112 M

6 0
3 years ago
100 POINTS!!!!<br><br> Please I need this page done lol
Alenkinab [10]

Answer:

okay.. Questions?????????

5 0
3 years ago
1. Compare and contrast the characteristics of metals and nonmetals.
Alona [7]

Answer:

1.Metals

These are very hard except sodium

These are malleable and ductile  pieces

These are shiny

Electropositive in nature

Non-metals

These are soft except diamond

These are brittle and can break down into pieces

These are non-lustrous except iodine

Electronegative in nature

2. The electrochemical series helps to pick out substances that are good oxidizing agents and those which are good reducing agents.In an electrochemical series the species which are placed above hydrogen are more difficult to be reduced and their standard reduction potential values are negative.

3. Arrhenius theory, theory, introduced in 1887 by the Swedish scientist Svante Arrhenius, that acids are substances that dissociate in water to yield electrically charged atoms or molecules, called ions, one of which is a hydrogen ion (H+), and that bases ionize in water to yield hydroxide ions (OH−).

4. The common application of indicators is the detection of end points of titrations. The colour of an indicator alters when the acidity or the oxidizing strength of the solution, or the concentration of a certain chemical species, reaches a critical range of values.

4 0
3 years ago
Read 2 more answers
Other questions:
  • BRAINLIESTTT ASAP!! PLEASE HELP ME :)
    7·1 answer
  • 2. At STP, a sample of gas occupies 24.5 mL. Calculate the volume of this gas at a
    8·1 answer
  • How many moles of copper must react to form 0.845
    6·1 answer
  • What type of reaction is this? A Synthesis reaction, decomposition, or replacement?
    5·1 answer
  • Which statement a-d about a state function is not correct?
    10·1 answer
  • 1.34 milligrams is the same as _______kg and ______g
    14·2 answers
  • 3x - 12 = 7x + 8 <br> -4x - 12 = 8 <br> -4x - 20 <br> X = -5
    12·1 answer
  • A sample of oxygen that occupies 2.9 X
    13·1 answer
  • What kinds of things could a magnet make another object or magnet do without touching it?​
    8·1 answer
  • Explain why the ionization energy to remove a second electron from potassium is higher than the ionization energy to remove four
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!