1.7 km^2 already has two significant figures.
Answer:
mass = 0.907865 grams
Explanation:
From the periodic table:
molar mass of Li = 6.941 grams
molar mass of F = 18.998 grams
Therefore:
molar mass of LiF = 6.941 + 18.998 = 25.939 grams/mole
number of moles can be calculated as follows:
number of moles = mass / molar mass
We have:
number of moles = 0.035 moles
molar mass = 25.939 grams/mole
Substitute in the equation to get the mass as follows:
0.035 = mass / 25.939
mass = 0.035 * 25.939 = 0.907865 grams
Hope this helps :)
Answer:
9
option d 9
pH of a 10^-5 M HCI solution is 9
Answer:
M
Explanation:
Concentration of
= 0.020 M
Constructing an ICE table;we have:
![Cu^{2+}+4NH_3_{aq} \rightleftharpoons [Cu(NH_3)_4]^{2+}_{(aq)}](https://tex.z-dn.net/?f=Cu%5E%7B2%2B%7D%2B4NH_3_%7Baq%7D%20%5Crightleftharpoons%20%5BCu%28NH_3%29_4%5D%5E%7B2%2B%7D_%7B%28aq%29%7D)
Initial (M) 0.020 0.40 0
Change (M) - x - 4 x x
Equilibrium (M) 0.020 -x 0.40 - 4 x x
Given that: 
![K_f } = \frac{[Cu(NH_3)_4]^{2+}}{[Cu^{2+}][NH_3]^4}](https://tex.z-dn.net/?f=K_f%20%7D%20%3D%20%5Cfrac%7B%5BCu%28NH_3%29_4%5D%5E%7B2%2B%7D%7D%7B%5BCu%5E%7B2%2B%7D%5D%5BNH_3%5D%5E4%7D)

Since x is so small; 0.40 -4x = 0.40
Then:








M