Answer:
Surely Achilles will catch the Tortoise, in 400 seconds
Explanation:
The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).
To calculate the time, we use kinematic expression for constant speed:
The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):
Answer:
The mass of the solution is 120 g.
Explanation:
The mass of the solution is given by:
Where:
: is the mass of the solution
: is the mass of the solvent
: is the mass of the solute
In the solution, the solvent is the majority compound (in mass) and the solute is the minority (in mass), so the solvent is the water and the solute is sodium chloride.
Hence, the mass of the solution is:
I hope it helps you!
Answer:
The angle of incidence is greater than the angle of refraction
Explanation:
Refraction occurs when a light wave passes through the boundary between two mediums.
When a ray of light is refracted, it changes speed and direction, according to Snell's Law:
where
:
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence (the angle between the incident ray and the normal to the boundary)
is the angle of refraction (the angle between the refracted ray and the normal to the boundary)
In this problem, we have a ray of light passing from air into clear plastic. We have:
(index of refraction of air)
approx. (index of refraction in clear plastic)
Snell's Law can be rewritten as
And since , we have
And so
Which means that
The angle of incidence is greater than the angle of refraction
Answer : The final temperature of gas is 266.12 K
Explanation :
According to the Joule-Thomson experiment, it states that when a gas is expanded adiabatically from higher pressure region to lower pressure region, the change in temperature with respect to change in pressure at constant enthalpy is known as Joule-Thomson coefficient.
The formula will be:
or,
As per question the formula will be:
.........(1)
where,
= Joule-Thomson coefficient of the gas =
= initial temperature =
= final temperature = ?
= initial pressure = 200.0 atm
= final pressure = 0.95 atm
Now put all the given values in the above equation 1, we get:
Therefore, the final temperature of gas is 266.12 K
Answer:
Explanation:
Given that
At X=0 V=Vo
At X=X1 V=0
As we know that friction force is always try to oppose the motion of an object. It means that it provide acceleration in the negative direction.
We know that
So the friction force on the box
Ff= m x a
Where m is the mass of the box.