Answer:
1.551×10^-8 Ωm
Explanation:
Resistivity of a material is expressed as shown;.
Resistivity = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the wire.
Given;
R = 0.0310 Ω
A = πd²/4
A = π(2.05×10^-3)²/4
A = 0.000013204255/4
A = 0.00000330106375
A = 3.30×10^-6m
l = 6.60m
Substituting this values into the formula for calculating resistivity.
rho = 0.0310× 3.30×10^-6/6.60
rho = 1.023×10^-7/6.60
rho = 1.551×10^-8 Ωm
Hence the resistivity of the material is 1.551×10^-8 Ωm
Answer:
6.00 x 10⁻⁸N
Explanation:
Given parameters:
Mass of each dump trucks = 1500kg
Distance between them = 50m
Unknown:
New gravitational force between them = ?
Solution:
From Newton's law of universal gravitation,
F =
F is the gravitational force
G is the universal gravitation constant
m is the mass
r is the distance
F =
= 6.00 x 10⁻⁸N
Answer:
Explanation:
Not sure what your options are but anything that says something like
"at the block surface in contact with the ramp along the line from V to Z" is probably a good shot.
<h3>Answer;</h3>
<u>It would make the lens stronger. </u>
<h3>Explanation;</h3>
- The focal length is the distance between the optical center or the center of the lens to the focal point of a convex or concave lens.
- The power of the convex lens is lens ability to undertake refraction or bend light. It is given as the reciprocal of focal length.
- Power of the lens = 1/ f; therefore the smaller the focal length the higher the power and the larger the focal length the lower the power.
- Thus; decreasing the focal length of a convex lens makes the lens stronger.
Heat makes things expand, so in hot water the ballon will get bigger