Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =
A hurricane becomes more powerful by evaporating water from oceans
Answer:
A) True
Explanation:
Researchers have detected numerous jets of gas ejected from poles of young stars and planetary nebulae.
By examining images of hydrogen molecules excited at infrared wavelengths, scientists have been able to see through the gas and dust in the Milky Way, in order to observe the most distant targets. These goals are normally hidden from view and many of them have never been seen before.
The entire study area covers approximately 1,450 times the size of the full moon, or the equivalent of an image of 95 gigapixels. The survey reveals jets emanating from proto-stars and planetary nebulas, as well as remnants of supernovae, the illuminated edges of vast clouds of gas and dust, and the warm regions that surround massive stars and their associated groups of smaller stars.