Downwards - from uphill towards the lowlands and eventually into the sea.
Answer:
(a)0.0675 J
(b)0.0675 J
(c)0.0675 J
(d)0.0675 J
(e)-0.0675 J
(f)0.459 m
Explanation:
15g = 0.015 kg
(a) Kinetic energy as it leaves the hand

(b) By the law of energy conservation, the work done by gravitational energy as it rises to its peak is the same as the kinetic energy as the ball leave the hand, which is 0.0675 J
(c) The change in potential energy would also be the same as 0.0675J in accordance with conservation law of energy.
(d) The gravitational energy at peak point would also be the same as 0.0675J
(e) In this case as the reference point is reversed, we would have to negate the original potential energy. So the potential energy as the ball leaves hand is -0.0675J
(f) Since at the maximum height the ball has potential energy of 0.0675J. This means:
mgh = 0.0675
0.015*9.81h = 0.0675
h = 0.459 m
The ball would reach a maximum height of 0.459 m
Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.
Answer:
Moment of inertia of the solid sphere:
I
s
=
2
5
M
R
2
.
.
.
.
.
.
.
.
.
.
.
(
1
)
Is=25MR2...........(1)
Here, the mass of the sphere is
M
M