Answer:
Metallic Bonding
Explanation:
Metallic Bonding
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions.
Answer:
Sucrose is a disaccharide composed of alpha D gluose and beta D fructose linked together by beta 2,alpha1 glycosidic linkage.
Explanation:
The specificity of glycosidic linkage very much essential to choose the substrate for the synthesis of specific disaccharide.
For example sucrose contain beta 2,alpha1 glycosidic linkage that means the hydroxyl group of anomeric carbon of one monosaccharide(fructose) should remain in beta conformation and the hydroxyl group of other monosaccharide(glucose) should remain in alpha conformation.
Answer:
heat can move from any source but if we are being legitimate it moves from convection
Explanation:
Answer: Rod X.
Explanation:
Ok, the electricity starts in the top left part. First, it must travel in the X rod, then it keeps traveling until it reaches the parallel path, and it can go to the Z rod, to the Y rod, or to both of them, and then it reaches the bulb (the circle with a X inside of it).
We know that two rods are conductors of electricity.
Now, suppose the case where rods Z and Y are the ones that conduct electricity, this means that X does not conduct electricity, then when the current reaches to X it stops (because X does not conduct) then the electricity never reaches the rods Z and Y, and then the electricity never reaches the bulb, but we know that the bulb lights up, so we must have that X is one of the conducting rods.
Then, if for example, Y does not conduct electricity, the electricity still can run through the Z rod and eventually reach the bulb.
So we can conclude that the rod that is definitely a conductor of electricity is rod X