Answer:
see calculations in explanation
Explanation:
percent = part/total x 100%
part = ∑ atomic mass of element
- hydrogen = 1.008 amu (atomic mass units)
- carbon = 12.011 amu
- nitrogen = 14.007 amu
total = ∑ molecular mass of compound
= H amu + C amu + Namu
= 1.008 amu + 12.011 amu + 14.007 amu
= 27.026 amu
%H = (1.008amu/27.026amu)100% = 3.730%
%C = (12.011amu/27.026amu)100% = 44.442%
%N = (14.007amu/27.026amu)100% = 51.827%
Check results ∑%values = 100%
3.730% + 44.442% + 51.827% = 99.999% ≅ 100%
The answes are
C)
Then it is
)A
Im doing this for class too bruh
Answer: Total pressure inside of a vessel is 0.908 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual partial pressures. exerted by each gas alone.

= partial pressure of nitrogen = 0.256 atm
= partial pressure of helium = 203 mm Hg = 0.267 atm (760mmHg=1atm)
= partial pressure of hydrogen =39.0 kPa = 0.385 atm (1kPa=0.00987 atm)
Thus 
=0.256atm+0.267atm+0.385atm =0.908atm
Thus total pressure (in atm) inside of a vessel is 0.908
Answer:
Sequence
Explanation:
Physical properties of the proteins are foundation of biological function of them.
A protein molecule is made up from the long chain of the amino acids. Each amino acid is linked to its neighbor by covalent peptide bond. Thus, proteins are also called as polypeptides.
Each protein has unique sequence of the amino acids, exactly same from one molecule to next. Different proteins has its own particular sequence of amino acid. This sequence is responsible for folding and binding of the protein and also its physical characteristics.