The term b^2 / 4a^2 is not added to the left side of the equation, because the term that was added to the right was not either b^2 / 4 a^2.
As you can see the ther b^2 / 4a^2 that appears in the last step of the table is inside a parenthesis, which is preceded by factor a.
Then, you need to apply the distributive property to know the term that you are really adding to the right side, i.e. you need to mulitply b^2 / 4a^2 * a which is b^2 / 4a.
That means that you are really adding b^2 / 4a to the right, so that is the same that you have to add to the left, which is what the last step of the table shows.
That situation is reflected by the statement "<span>The
distributive property needs to be applied to determine the value to add
to the left side of the equation to balance the sides of the equation".</span> That is the answer.
Let v = the running speed
After running at constant speed for 26 min, the distance traveled is
d = (v m/min)*(26 min) = 26v m
Because there are 1500 m to go, the distance traveled is
10000 - 1500 = 8500 m
The running speed is
v = (8500 m)/(26 min) = 326.9 m/min
In km/h, the speed is
v = (0.3269 km/min)*(60 min/h) = 19.6 km/h
Answer: The running speed is 19.6 km/h
There's no rule like that. A glass mirror is opaque but reflects
more light than a clean transparent glass window does.
On the other hand, a material that's transparent but shiny may
reflect more light than an opaque material that's painted black.
You can't give any general rule.
A. speeding up 10 m/s every second.
an acceleration with a negative number simply implies direction.
positive being north (for example) and negative being south
Answer:
r = 14.13 m
Explanation:
Given that,
Charge 1, q₁ = +0.0129 C
Charge 2, q₂ = -0.00707 C
The force between charges, F = 4110 N
We need to find the distance between charges. The formula for the force between charges is given by :

Where
r is the distance between charges
So,

So, the distance between charges is equal to 14.13 m.