The equation of GPE is mgH, where m is mass, g is gravitational acceleration, and H is the height.
If we're solving for the change in GPE, then:
∆
= mg∆H
<u>Input our given values for m and g:</u>
∆
= 0.25 * 9.80 * ∆H
<u>The book falls from 2 meters high to 0.5 meters high, so:</u>
∆
= 0.25 * 9.80 * (2.0 - 0.5)
∆
= 0.25 * 9.80 * 1.5
∆
= 3.675 (J)
<u>Adjust for significant figures:</u>
∆
= 3.7 (J)
The change in gravitational potential energy was 3.7 (J)
If you have any questions on anything I did to get to the answer, just ask!
- breezyツ
Answer:
The new force between the charges becomes double of the initial force.
Explanation:
The force acting between charge particles is given by :

k is electrostatic constant
r is distance between charges
If one of the charges are doubled, then, q₁ = 2q₁
The new force becomes,

So, the new force between the charges becomes double of the initial force.
That could be a comet, or any one of the billions of meteoroids
moving in a cloud that's actually the remains of a shattered comet.