The answer is “D. all of the above”!
Metal from the paper clip is attracted to the magnet, so it will naturally move toward and stick to the magnet. This will cause the paper clip to temporarily become a magnet for other metals. I hope this helped!
Answer:
Fnet = 0
Explanation:
- Since the block slides across the floor at constant speed, this means that it's not accelerated.
- According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.
- This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:

- In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:

⇒ 169 N + Fn = Fg = 216 N (3)
- This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:
- Fn = 216 N - 169 N = 47 N (4)
The forces of attraction between water molecules and the glass walls and within the molecules of water themselves are what enable the water to rise in a thin tube immersed in water.
<h3>What is force?</h3>
Force is defined as the push or pulls applied to the body. Sometimes it is used to change the shape, size, and direction of the body.
Force is defined as the product of mass and acceleration. Its unit is Newton.
Surface or interfacial forces lead to capillarity. The forces of attraction between the water molecules and the glass walls and among the water molecules themselves are what causes the water in a thin tube submerged in water to rise.
Hence, the water rises up a thin capillary tube can be explained by Newton's third law.
To learn more about the force refer to the link;
brainly.com/question/26115859#SPJ1
#SPJ1
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>