Answer: Nia could measure the temperature of the bottom floor of a house to see if the heat had risen in the house due to convection.
Explanation:
Answer:
Car 1
Explanation:
The steering column which moves the least is less likely to to the driver's chest ordinarily. Driver tends to remain in motion until restrained. Assuming a seat belt not airbag
Generally one would compute a vector find direction and distance. This is like solving for a hypotenuse / in a right angled triangle problem. On face value the column moving the least is safer. The 6/24 would hit the upper chest, face, or possibly break the neck.
hence, car 1 moved 3 cm upward and 2 cm rearward is safer.
Answer:
6 days.
Explanation:
From radioactivity, The expression for half life is given as,
R/R' = 2⁽ᵃ/ᵇ)................... Equation 1
Where R = original mass of the radioactive substance, R' = Remaining mass of the radioactive substance after decay, a = Total time taken to decay, b = half life.
Given: R = 80 g, R' = 10 g, b = 2 days.
Substitute into equation 1
80/10 = 2⁽ᵃ/²⁾
8 = 2⁽ᵃ/²⁾
2³ = 2⁽ᵃ/²)
Equating the base and solving for a
3 = a/2
a = 2×3
a = 6 days.
Answer:
The buoyant force is 3778.8 N in upward.
Explanation:
Given that,
Mass of balloon = 222 Kg
Volume = 328 m³
Density of air = 1.20 kg/m³
Density of helium = 0.179 kg/m³
We need to calculate the buoyant force acting
Using formula of buoyant force

Where,
= density of air
V = Volume of balloon
g = acceleration due to gravity
Put the value into the formula


This buoyant force is in upward direction.
Hence, The buoyant force is 3778.8 N in upward.
Answer:
The ratio is KE : TM = 0.75
Explanation:
from the question we are told that
The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position
Generally the total mechanical energy of the mass is mathematically represented as

Here k is the spring constant , A is the total displacement of the the mass from maximum compression to maximum extension of the spring
Generally this total mechanical energy is mathematically represented as

=> 
Here the potential energy of the mass is mathematically represented as
![PE = \frac{1}{ 2} * k * [ x ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20x%20%5D%5E2)
Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is

So
![PE = \frac{1}{ 2} * k * [ \frac{A}{2} ]^2](https://tex.z-dn.net/?f=PE%20%20%20%3D%20%5Cfrac%7B1%7D%7B%202%7D%20%20%2A%20%20k%20%2A%20%20%5B%20%5Cfrac%7BA%7D%7B2%7D%20%20%5D%5E2)
So
![KE = \frac{1}{2} * k * A^2 - \frac{1}{2} * k * [\frac{A}{2} ]^2](https://tex.z-dn.net/?f=KE%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20A%5E2%20-%20%5Cfrac%7B1%7D%7B2%7D%20%20%2A%20%20k%20%20%2A%20%20%5B%5Cfrac%7BA%7D%7B2%7D%20%5D%5E2)
=> 
=> 
So the ratio of
is mathematically represented as

=>