Answer:
9.66 x 10^-6 m
Explanation:
Use the Wein's displacement law

Where, b is the Wein's constant
b = 2.898 x 10^-3 meter-kelvin
So, λm x 300 = 2.898 x 10^-3
λm = 9.66 x 10^-6 m
Answer:
a) the Tunguska meteoric impact
Explanation:
The Tunguska Event, sometimes known as the Tungus Meteorite is thought to have resulted from an asteroid or comet entering the earth's atmosphere and exploding. The event released as much energy as fifteen one-megaton atomic bombs. As well as blasting an enormous amount of dust into the atmosphere, felling 60 million trees over an area of more than 2000 square kilometres. Shaidurov suggests that this explosion would have caused "considerable stirring of the high layers of atmosphere and change its structure." Such meteoric disruption was the trigger for the subsequent rise in global temperatures
According to Vladimir Shaidurov of the Russian Academy of Sciences, the apparent rise in average global temperature recorded by scientists over the last hundred years or so could be due to atmospheric changes that are not connected to human emissions of carbon dioxide from the burning of natural gas and oil.
Adding neutron to the nucleus creates new isotopes of that element. Mass of the nucleus will increase if you add neutron to it but element will remain the same. If you add proton to the nucleus, mass of the nucleus will change but also element will also change. That is, atom of the element will change.
Answer:does anyone know how to do this please
Explanation: