Answer:
u= 20.09 m/s
Explanation:
Given that
m = 0.02 kg
M= 2 kg
h= 0.2 m
Lets take initial speed of bullet = u m/s
The final speed of the system will be zero.
From energy conservation
1/2 m u²+ 0 = 0+ (m+M) g h
m u²=2 (m+M) g h
By putting the values
0.02 x u² = 2 (0.02+2) x 10 x 0.2 ( take g=10 m/s²)
u= 20.09 m/s
To develop this problem it is necessary to apply the concepts related to Gravitational Potential Energy.
Gravitational potential energy can be defined as

As M=m, then

Where,
m = Mass
G =Gravitational Universal Constant
R = Distance /Radius
PART A) As half its initial value is u'=2u, then



Therefore replacing we have that,

Re-arrange to find v,



Therefore the velocity when the separation has decreased to one-half its initial value is 816m/s
PART B) With a final separation distance of 2r, we have that

Therefore




Therefore the velocity when they are about to collide is 
Answer:
The answer is D. density.