Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m
Velocity = distance / time = ( 2 * pi * r ) / t = 20.583 m/s
<span>x component = sine ( 32 ° ) * 20.583 = 10.91 m/s
hope this helps :)
</span>
To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
For the answer to the question above
Forecasting how a business might do in the future.
Calculating tax.
Doing basic payrolls.
Calculating Revenues.
Producing charts.
--Going past 5--
Inventory tracking
Very (VERY) basic CRM for small businesses
I hope my answer helped you.
Answer:

Explanation:
Given data

To find
Mutual inductance of the two-coil system
Solution
The mutual inductance given as:
M= (-VΔt)/ΔI
Substitute the given values
So
