Answer:
e. T₂= 4T₁
Explanation:
Initially, we have a number of moles (n₁) a gas sample at a certain pressure (P), temperature (T₁) and volume (V). We can relate these variables through the ideal gas equation.
P . V = n₁ . R . T₁
where,
R is the ideal gas constant
We can rearrange this equation like:

If only one fourth of the initial molecules remain n₂ = 1/4 n₁. The new temperature (T₂) assuming pressure and temperature remain constant is:

Answer:
Wavelength of the photon depends on transition from different states.
Explanation:
The wavelength of the photon that is emitted from the atom during the transition depends on the transition from different states. If the photon is emitted from n=4 state to n=3 state, the wavelength of photon is 1875 while on the other hand, if the photon is emitted from n=5 state to n=3 state, the wavelength of photon is 1282. If the photon is emitted from n=3 state to n=2 state, the wavelength of photon is 656.
Half-reaction for the cell's anode is given below:
Anode : 
The anode is defined as the electrode at which electrons leave the cell and oxidation occurs, and the cathode as the electrode at which electrons enter the cell and reduction occurs. The anode is usually the positive side.
Learn more about anode here:
brainly.com/question/4052514
Your given question is quite incomplete here is complete question.
A voltaic cell is based on the reduction of _ Agt(aq) to Ag(s) and the oxidation of Sn(s) to Sn2+(aql) : Part 1 Include the phases of all species in the chemical equation: (aqh Anode: Sn(s) Sn?+ (aq)
#SPJ4
Jsjsjskskskskskssjdjssjsksksskskkskskssiosis
Answer:
True.
Explanation:
An exothermic reaction has a positive enthalpy (heat) of reaction. However, it can be negative in some circumstances.